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Motivating experiment The best generalization occurs at small
overall scale and large relative scale
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TL;DR: We derive exact solutions to a minimal model that transitions between lazy
and rich learning, precisely elucidating how unbalanced initialization variances ana
learning rates determine the degree of feature learning in a finite-width network.



Part I: A Minimal model that transitions between lazy & rich

The relative scale of the initialization
determines the sign and magnitude
of the conserved quantity

6=a’—|w|?

which constrains geometry of
learning trajectories.

We study a two-layer linear network with a single hidden neuron

defined by the map f(x; 8) = aw'x first proposed by Azulay et al. 2021.

We show how to solve the gradient flow dynamics exactly by solving a
Riccati equation and Bernoulli ODE.
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Using the conserved quantity we derive a self-consistent equation for the 1. 5= 4
dynamics of f = aw in function space, oL
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which can be interpreted as preconditioned gradient flow on the loss. The

preconditioning matrix determines the trajectory and NTK matrix K = XMXT.

=
9: 0.8 We consider the influence of 6 on the preconditioning matrix and notice
2 three distinct regimes:

0.6
= 1. Lazy — when 6 > 0, M =~ 61, akin to linear regression.
© T
004 2. —when 6 =0, M =, /nn,|AIlA+ ﬁﬂz), akin to to silent
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502 alignment (Atanasov et al. 2021).
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Part ll: Extending analysis to wide, deep, and nonlinear networks

We consider the dynamics of a two-layer linear network, f(x; 0) = ATWx : R? — R¢, where the matrix
A =AAT — WWT € R™" is conserved throughout gradient flow. By assuming structure on A at initialization

we derive a self-consistent equation for the dynamics of f = WIA.

Theorem 4.2 When A =6l andh=dit6 <Qorh=citdo >0,
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Using this expression the dynamics of the singular values ot f can be described as a mirror flow with a

hyperbolic entropy potential, which smoothly interpolates between an #! and £ penalty on the singular

values for the rich (0 = 0) and lazy (0 — % o0) regimes respectively.



We consider the dynamics of a two-layer piecewise linear network without
biases, f(x;0) = alo(Wx) : RY - R, where the quantity o, = akz — ||wk||2

for each hidden neuron k € [h] is conserved through gradient flow.

As in linear networks, we attempt to derive a self-consistent equation for the
dynamics of each neuron’s map f, = q,w,,

,Bk = - M, Z;;l CriXi (f(xi; 0) — yi) -

oL
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However, unlike the linear setting, the gradient 0.£/df, driving the dynamics
is not shared for all neurons because of its dependence on the activation

patterns ¢;; = o'(w/x,).

Nevertheless, we can understand the influence of 9, on the learning dynamics
by considering the radial and directional dynamics of 5, — the activation

atterns ¢;. only depend on the direction of £,.
P ki Only aep k

Rapid feature learning is due to a large change in activation patterns,
but a small change in parameter space.
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We regulate the first layer's learning speed relative to the rest of the network by dividing its initialization by

a — a = | represents standard parameterization, while ¢ > 1 and a@ < 1 corresponds to upstream and
downstream initializations, respectively.
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