

A Genentech Accelerator



# **PROP**erty **EN**hancer: Match your data to follow the gradient

Nataša Tagasovska, Vlad Gligorijevic, Kyunghyun Cho, Andreas Loukas











## **Design Optimization in Low-Data Regimes**

Problem Setup and Motivation





#### Applications

| x         | У                   |
|-----------|---------------------|
| polygon   | area                |
| molecule  | functional property |
| portfolio | revenue             |
| airfoil   | aerodynamics        |



## **Design Optimization in Low-Data Regimes**

**Problem Setup and Motivation** -







| <        | У                   |
|----------|---------------------|
| olygon   | area                |
| nolecule | functional property |
| ortfolio | revenue             |
| irfoil   | aerodynamics        |



## **Design Optimization in Low-Data Regimes**

Problem Setup and Motivation





Applications

| x         | у                   |
|-----------|---------------------|
| polygon   | area                |
| molecule  | functional property |
| portfolio | revenue             |
| airfoil   | aerodynamics        |



# **Design Optimization in Low-Data Settings**

- Challenges in explicitly guided design: generative + discriminative model





- Requires a (trustworthy) discriminative model
- Large training datasets
- Falls off data-manifold
- Difficulty in non-convex, complex distributions



# **Design Optimization in Low-Data Settings**



Implicitly guided design



- No need for discriminative model
- Low data regime
- In-distribution designs (with theoretical guarantees)
- Linear approximation of the gradient close to starting designs



# **Property Enhancer - PropEn**

Step 1: Match your dataset





We view the group of samples with superior property values as the **treated** group and their lower value counterpart as the **control** group. This motivates us to construct a **matched dataset** for every (x, y) within D:

$$\mathcal{M} = \left\{ (x, x') \middle| \begin{array}{l} x, x' \in \mathcal{D} \\ \|x' - x\|^2 \le \Delta_x, \ g(x') - g(x) \in (0, \Delta_y] \end{array} \right\},$$

Where  $\Delta_x$  and  $\Delta_y$  are predefined, positive thresholds that will trade-off exploration vs exploitation.

One control - to - many treatments -> extending dataset by large order of magnitude!



## **Property Enhancer - PropEn**

- Step 2: Approximate the gradient



$$\ell(f_{\theta}; \mathcal{M}) = \frac{1}{|\mathcal{M}|} \sum_{(x, x') \in \mathcal{M}} \ell(f_{\theta}(x), x')$$

Minimizing the matched reconstruction objective yields a model that **approximates the direction** of the gradient of  $g(\cdot)$ , even if no property predictor has been explicitly trained.

#### Theorem 1.

Let  $f^*$  be the optimal solution of the matched reconstruction objective with a sufficiently small  $\Delta_x$ . For any point x in the matched dataset for which p is uniform within a ball of radius  $\Delta_x$ , we have  $f^*(x) \rightarrow c \nabla_g(x)$  for some positive constant c.



Prescient

A Genentech Accelerator

Design

8

## **Property Enhancer - PropEn**





At test time, we feed a seed design  $x_0$  to PropEn, and read out an optimized design  $x_1$  from the its output. We then proceed to iteratively re-feed the current design to PropEn until  $f_{\theta}(x_t) = x_t$ 







### In-vitro experiment: therapeutic protein optimization

Expression rate: ~95% Binding rate: ~90%



D. Generating/Optimizing antibodies with PropEn

**D. 1. Iterative Optimization** 





C. Training PropEn

B. Matched batch

(Ab 1, Ab 2)

V V

\$/

\$ 11

\$11 \$11

1

4 Y 

1 \$11

Ŷ

Y \$/



Genentech A Member of the Roche Group



## In-vitro experiment: therapeutic protein optimization

#### Experimental design

- **task**: optimizing the binding affinity of lead antibody molecule
- **metric**: negative log ratio of the association and dissociation constants (pKD)
- **data collection**: low-throughput Surface Plasmon Resonance (SPR) experiments
- data: 3 targets, 9 seeds

#### **Baselines**

# Latent Diffusion - unguided and guided<sup>[3]</sup>, discrete Walk-Jump Sampling<sup>[1]</sup>, Lambo 2<sup>[2]</sup>

- Frey, Nathan C., et al. "Protein discovery with discrete walk-jump sampling." *ICLR* 2024.
  Gruver, Nate, et al. "Protein design with guided discrete diffusion." *NeurIPS* 2023.
- [3] Choi, J., et al. "Conditioning method for denoising diffusion probabilistic models. ICCV 2021.



## Results - 1

Table 1: Binding rate (and number of designs submitted). Higher is better.

|                    | Herceptin  | T1S1       | T1S2       | T1S3        | T2S1       | T2S2        | T2S3        | T2S4        | overall     |
|--------------------|------------|------------|------------|-------------|------------|-------------|-------------|-------------|-------------|
| PropEn             | 90.9% (11) | 100.0% (4) | 100.0% (6) | 100.0% (24) | 20.0% (5)  | 100.0% (23) | 100.0% (16) | 100.0% (4)  | 94.6% (93)  |
| walk-jump [7]      | -          | 25.0% (4)  | 80.0% (15) | 100.0% (18) | 26.7% (30) | 41.7% (12)  | 100.0% (15) | 63.6% (11)  | 62.9% (105) |
| lambo (guided) [8] | 50.0% (10) | 0.0% (4)   | -          | 100.0% (5)  | 0.0% (9)   | -           | 100.0% (1)  | 57.1% (14)  | 44.2% (43)  |
| diffusion          | -          | 100.0% (8) | 85.7% (14) | -           | -          | -           | 88.2% (17)  | 66.7% (6)   | 86.7% (45)  |
| diffusion (guided) | -          | 85.2% (27) | 96.9% (32) | -           | -          | -           | 93.3% (15)  | 100.0% (10) | 92.9% (84)  |

#### Table 2: Fraction of designs improving the seed and total designs tested. Higher is better.

|                    | Herceptin  | T1S1       | T1S2       | T1S3       | T2S1      | T2S2       | T2S3      | T2S4       | overall    |
|--------------------|------------|------------|------------|------------|-----------|------------|-----------|------------|------------|
| PropEn             | 0.0% (11)  | 100.0% (4) | 33.3% (6)  | 41.7% (24) | 0.0% (5)  | 69.6% (23) | 0.0% (16) | 0.0% (4)   | 34.4% (93) |
| walk-jump [7]      | -          | 25.0% (4)  | 6.7% (15)  | 5.6% (18)  | 3.3% (30) | 8.3% (12)  | 0.0% (15) | 0.0% (11)  | 4.8% (105) |
| lambo (guided) [8] | 10.0% (10) | 0.0% (4)   | -          | 0.0% (5)   | 0.0% (9)  | -          | 0.0% (1)  | 35.7% (14) | 14.0% (43) |
| diffusion          | -          | 62.5% (8)  | 14.3% (14) | -          | -         | -          | 0.0% (17) | 0.0% (6)   | 15.6% (45) |
| diffusion (guided) | _          | 51.9% (27) | 15.6% (32) | -          | -         | -12        | 0.0% (15) | 0.0% (10)  | 22.6% (84) |



## **Results - 2**



Figure 5: Therapeutic protein optimization results: (a) The left figure contrasts the binding rate with the 90-th percentile of the binding affinity improvement for each method and seed. Points on the top-right are on the Pareto front. (b) The right figure focuses on binders and reports the histograms of binding affinity improvement across all designs and seeds.



### Summary & Outlook



- → property enhancement method <u>without discriminator</u> for a single or multiple properties
- → data (modality) agnostic
- → works well even in small medium data regimes
- → easy to train no hyperparameter tuning



# **Bonus slides**



## Multi-property enhancer



Instead of single property, we can optimize for a multivariate score of a molecule

Step 1: compute multivariate rank/score for multiple properties Step 2: match and optimize designs for the multivariate score with Propen







## Variations of PropEn

#### (PropEn) mix

- reconstruct both better design and the original

 $\ell(f,\hat{p}) = \mathbb{E}_{x \sim \hat{p}}[\mathbb{E}_{x' \sim \hat{\mu}_x}[\ell(x', f(x)) + \beta \,\ell(x, f(x))]]$ 

- lets us stay close to the seed
- increases diversity

#### (PropEn) x2x reconstruct only the design

xy2xy reconstruct the design and the property value;

- helps stabilizing training
- allows for controlled generation



# Variations of PropEn

ablation study on toy data

(PropEn) mix reconstruct both better design and the original
 (PropEn) x2x - reconstruct only the design
 xy2xy - reconstruct the design and the property value;



Prescient

Design A Genentech Accelerator



Figure 3: PropEn in toy examples in  $d \in \{50, 100\}$ , left side: 8-Gaussians, right side: pinwheel. Distribution of evaluation metrics from 10 repetitions of each experiment.

