

Towards the Dynamics of a DNN Learning Symbolic Interactions

Qihan Ren^{*1}, Junpeng Zhang^{*1}, Yang Xu², Yue Xin¹, Dongrui Liu³, Quanshi Zhang⁺¹ ¹Shanghai Jiao Tong University ²Zhejiang University ³Shanghai Artificial Intelligence Laboratory

* Equal contribution+ Correspondence

> Motivation and contribution

Whether the inference logic of a DNN can be faithfully explained as **symbolic concepts/primitives?**

- How to define concepts encoded by a DNN: an open problem!
 - > Many previous studies: based on intuition and empirical observation
 - Recent studies: mathematically formulate concepts using interactions, having observed^[1] and proved^[2] the emergence of sparse interaction concepts
 - Empirically observed^[3] the two-phase dynamics of interaction concepts, which explains the change of generalizability at the concept level
- Our main contribution:

Theoretically prove the two-phase dynamics of interaction concepts

^[1] Li and Zhang. Does a Neural Network Really Encode Symbolic Concept? ICML 2023.

^[2] Ren et al. Where We Have Arrived in Proving the Emergence of Sparse Symbolic Primitives in DNNs. ICLR, 2024.

^[3] Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.

Given a DNN $v: \mathbb{R}^n \to \mathbb{R}$ and an input sample x with n input variables $N = \{1, ..., n\}$, the network output v(x) can be **disentangled into different interaction effects**:

$$v(\mathbf{x}) = v(\mathbf{x}_{\emptyset}) + \sum_{\emptyset \neq S \subseteq N} I_{\text{and}}(S|\mathbf{x}) + \sum_{\emptyset \neq S \subseteq N} I_{\text{or}}(S|\mathbf{x})$$

Given a DNN $v: \mathbb{R}^n \to \mathbb{R}$ and an input sample x with n input variables $N = \{1, ..., n\}$, the network output v(x) can be **disentangled into different interaction effects**:

$$v(\mathbf{x}) = v(\mathbf{x}_{\emptyset}) + \sum_{\emptyset \neq S \subseteq N} I_{\text{and}}(S|\mathbf{x}) + \sum_{\emptyset \neq S \subseteq N} I_{\text{or}}(S|\mathbf{x})$$

AND interactions
$$I_{\text{and}}(S|\mathbf{x}) \stackrel{\text{def}}{=} \sum_{T \subseteq S} (-1)^{|S| - |T|} v_{\text{and}}(\mathbf{x}_{T})$$

$$OR \text{ interactions}$$

$$I_{\text{or}}(S|\mathbf{x}) \stackrel{\text{def}}{=} -\sum_{T \subseteq S} (-1)^{|S| - |T|} v_{\text{or}}(\mathbf{x}_{N\setminus T})$$

• **Complexity (order) of interactions**: defined as |S|

- **Complexity (order) of interactions**: defined as |S|
- If $|I_{and}(S|\mathbf{x})|$ or $|I_{or}(S|\mathbf{x})|$ is large \square Salient interaction concept
- If $|I_{and}(S|\mathbf{x})|$ or $|I_{or}(S|\mathbf{x})| \approx 0$ Noisy pattern

- **Complexity (order) of interactions**: defined as |S|
- If $|I_{and}(S|\mathbf{x})|$ or $|I_{or}(S|\mathbf{x})|$ is large \implies Salient interaction concept
- If $|I_{and}(S|\mathbf{x})|$ or $|I_{or}(S|\mathbf{x})| \approx 0$ Noisy pattern
- **Desirable properties:** sparsity, universal matching, sample-wise/model-wise transferability...

• **First phase**: random noise (spindle-shaped) → low-order (simple) interactions

Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.

- First phase: random noise (spindle-shaped) \rightarrow low-order (simple) interactions
- Second phase: low-order (simple) interactions → gradually encode high-order (complex) interactions

Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.

- First phase: random noise (spindle-shaped) → low-order (simple) interactions
- Second phase: low-order (simple) interactions → gradually encode high-order (complex) interactions
- Two phases are **temporally aligned** with loss gap
 - ➤ Complexity of interactions ↔ generalizability/overfitting level
 - High-order interactions have weaker generalization power

Zhang et al. Two-Phase Dynamics of Interactions Explains the Starting Point of a DNN Learning Over-Fitted Features. arXiv preprint arXiv: 2405.10262v1.

> Two-phase dynamics are widely observed

• The two-phase dynamics has been observed on different DNNs and datasets

Main assumptions

• Reformulate the inference on a sample as a **weighted sum of interaction triggering functions**

Main assumptions

- Reformulate the inference on a sample as a **weighted sum of interaction triggering functions**
- The training of a DNN can be viewed as regressing a set of **potential ground-truth interactions**

Main assumptions

- Reformulate the inference on a sample as a **weighted sum of interaction triggering functions**
- The training of a DNN can be viewed as regressing a set of **potential ground-truth interactions**
- Parameters in an initialized DNN contain a large amount of noise, and we assume that this parameter noise gradually decreases during the training process

Analytical solution

• Interactions encoded by the DNN at an intermediate point during training can be formulated as the solution to the following objective:

$$\arg\min_{\boldsymbol{w}} \tilde{L}(\boldsymbol{w}) , \qquad \tilde{L}(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{\epsilon}} \mathbb{E}_{S \subseteq N} \left[\left(\boldsymbol{y}_{S} - \boldsymbol{w}^{\mathsf{T}} (\boldsymbol{J}(\boldsymbol{x}_{S}) + \boldsymbol{\epsilon}) \right)^{2} \right]$$

 $y_S \stackrel{\text{\tiny def}}{=} y(x_S) = \sum_{T \subseteq S} w_T^*$: set of ground-truth interactions to learn

- $w = \operatorname{vec}(\{w_T\}_{T \subseteq N})$: weights, $|w_T| \rightarrow \operatorname{strength}$ of interaction T
- $J(\mathbf{x}) = \operatorname{vec}(\{J_T(\mathbf{x})\}_{T \subseteq N}): \text{ interaction triggering function, } \forall \hat{\mathbf{x}}, J_T(\hat{\mathbf{x}}_S) = \mathbf{1}(T \subseteq S)$
- $\epsilon = \operatorname{vec}(\{\epsilon_T\}_{T \subseteq N})$: noise on the interaction triggering function (induced by the parameter noise), $\mathbb{E}[\epsilon_T] = 0$, $\operatorname{Var}[\epsilon_T] = 2^{|T|}\sigma^2$.

As training proceeds, noise level σ^2 gradually decreases

$$\arg\min_{\mathbf{w}} \tilde{L}(\mathbf{w}) , \qquad \tilde{L}(\mathbf{w}) = \mathbb{E}_{\boldsymbol{\epsilon}} \mathbb{E}_{S \subseteq N} \left[\left(y_{S} - \mathbf{w}^{\mathsf{T}} (J(\mathbf{x}_{S}) + \boldsymbol{\epsilon}) \right)^{2} \right] \qquad \operatorname{Var}[\boldsymbol{\epsilon}_{T}] = 2^{|T|} \sigma^{2}$$

Explaining the two phases based on analytic solution

$$\arg\min_{\boldsymbol{w}} \tilde{L}(\boldsymbol{w}) , \qquad \tilde{L}(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{\epsilon}} \mathbb{E}_{S \subseteq N} \left[\left(y_{S} - \boldsymbol{w}^{\mathsf{T}} (J(\boldsymbol{x}_{S}) + \boldsymbol{\epsilon}) \right)^{2} \right] \qquad \operatorname{Var}[\boldsymbol{\epsilon}_{T}] = 2^{|T|} \sigma^{2}$$

Explaining the two phases based on analytic solution

$$\arg\min_{\boldsymbol{w}} \tilde{L}(\boldsymbol{w}) , \qquad \tilde{L}(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{\epsilon}} \mathbb{E}_{S \subseteq N} \left[\left(y_{S} - \boldsymbol{w}^{\mathsf{T}} (J(\boldsymbol{x}_{S}) + \boldsymbol{\epsilon}) \right)^{2} \right] \qquad \text{Var}[\boldsymbol{\epsilon}_{T}] = 2^{|T|}$$

 $|\sigma^2|$

Explaining the two phases based on analytic solution

> Theoretical vs. real interaction distribution

• Theoretical interaction distribution can well predict real interaction distribution at different time points

In this study:

- We focus on a two-phase dynamics of interaction concepts encoded by a DNN, which is previously discovered to temporally align with the loss gap
- We theoretically prove the two-phase dynamics under certain assumptions
- Our theory can predict real dynamics of interactions quite well