From Linear to Linearizable Optimization: A Novel Framework with Applications to Stationary and Non-stationary DR-submodular Optimization

Introduction

The problem of optimizing DR-submodular functions over a convex set has attracted considerable interest in machine learning and theoretical computer science. Example applications include experimental design, resource allocation, influence maximization, mean-field inference in probabilistic models, and MAP inference in determinantal point processes (DPPs), among others.

For $\gamma \in (0, 1]$, a differentiable function $f : [0, 1]^d \to \mathbb{R}_{>0}$ is called γ -weakly continuous DR-submodular if for all $\mathbf{x}, \mathbf{y} \in [0, 1]^d$ with $\mathbf{x} \geq \mathbf{y}$, we have $\gamma \nabla f(\mathbf{x}) \leq \nabla f(\mathbf{y})$.

Online optimization

The online optimization game could be modeled as a game between an agent and an adversary. At each time-step $1 \leq t \leq T$, the agent plays an action \mathbf{x}_t , then the adversary selects a function f_t and a query oracle for this function. Finally the agent then queries the query oracle. The feedback is called *bandit/semi-bandit* if the query oracle returns (an estimate of) the value/gradient of f_t at the point it is being queried and the agent only queries at the point of action, i.e., \mathbf{x}_t . The adversary is called *oblivious* if it selects the sequence of functions before the first action by the agent. We use $\operatorname{Adv}_{i}^{o}(\mathbf{F}, B)$ to denote an oblivious adversary over function class \mathbf{F} with *i*-th order query oracles that return values that are bounded by B and we replace the superscript with f to denote fully adaptive adversaries.

Following [1], in order to handle different notions of regret with the same approach, for an agent \mathcal{A} , adversary Adv, compact set $\mathcal{U} \subseteq \mathcal{K}^T$, approximation coefficient $0 < \alpha \leq 1$ and $1 \leq a \leq b \leq T$, we define regret as

$$\mathcal{R}_{\alpha,\mathrm{Adv}}^{\mathcal{A}}(\mathcal{U})[a,b] \coloneqq \sup_{\mathcal{B}\in\mathrm{Adv}} \mathbb{E} \left[lpha \max_{\mathbf{u}=(\mathbf{u}_1,\cdots,\mathbf{u}_T)\in\mathcal{U}} \sum_{t=a}^b f_t(\mathbf{u}_t) - \sum_{t=a}^b f_t(\mathbf{x}_t) \right],$$

where the expectation is over the randomness of the algorithm and the query oracle.

Static adversarial regret or simply regret corresponds to a = 1, b = T and $\mathcal{U} = T$ $\mathcal{K}^T_{\star} := \{(\mathbf{x}, \cdots, \mathbf{x}) \mid \mathbf{x} \in \mathcal{K}\}$. When a = 1, b = T and \mathcal{U} contains only a single element then it is referred to as the *dynamic regret*. Adaptive regret, is defined as $\max_{1 \le a \le b \le T} \mathcal{R}^{\mathcal{A}}_{\alpha, Adv}(\mathcal{K}^{T}_{\star})[a, b]$. We drop a, b and \mathcal{U} when the statement is independent of their value or their value is clear from the context.

Linearizable functions

Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a convex set, **F** be a function class over \mathcal{K} . We say the function class **F** is upper-quadratizable if there are maps $\mathfrak{g} : \mathbf{F} \times \mathcal{K} \to \mathbb{R}^d$ and $h : \mathcal{K} \to \mathcal{K}$ and constants $\mu \ge 0, 0 < \alpha \le 1$ and $\beta > 0$ such that

$$\alpha f(\mathbf{y}) - f(h(\mathbf{x})) \le \beta \left(\langle \mathfrak{g}(f, \mathbf{x}), \mathbf{y} - \mathbf{x} \rangle - \frac{\mu}{2} \| \mathbf{y} - \mathbf{x} \| \mathbf{y} + \mathbf{x} \| \mathbf{y} - \mathbf{x} \| \mathbf{y} + \mathbf{x} \| \mathbf{y} \| \mathbf{y} + \mathbf{x} \| \mathbf{y} + \mathbf{x} \| \mathbf{y} \| \mathbf{y}$$

As a special case, when $\mu = 0$, we say **F** is upper-linearizable.

Algorithm 1: Online Maximization By Quadratization - $OMBQ(\mathcal{A}, \mathcal{G}, h)$ **Input:** horizon T, semi-bandit algorithm \mathcal{A} , query algorithm \mathcal{G} for \mathfrak{g} , the map $h: \mathcal{K} \to \mathcal{K}$ for t = 1, 2, ..., T do

Play $h(\mathbf{x}_t)$ where \mathbf{x}_t is the action chosen by \mathcal{A}

The adversary selects f_t and a first order query oracle for f_t

Run \mathcal{G} with access to \mathbf{x}_t and the query oracle for f_t to calculate \mathbf{o}_t

Return \mathbf{o}_t as the output of the query oracle to \mathcal{A} end

Theorem 1. Let \mathcal{A} be an algorithm for online optimization with semi-bandit feedback. Also let **F** be a function class over \mathcal{K} that is quadratizable with $\mu \geq 0$ and maps \mathfrak{g} and h, and let $\mathcal{A}' = \mathsf{OMBQ}(\mathcal{A}, \mathcal{G}, h)$. If \mathcal{G} is a query algorithm for \mathfrak{g} that returns unbiased estimates and its output is bounded by B_1 , then we have

 $\mathcal{R}^{\mathcal{A}'}_{\alpha,\mathrm{Adv}_1^{\mathrm{o}}(\mathbf{F},B_1)} \leq \beta \mathcal{R}^{\mathcal{A}}_{1,\mathrm{Adv}_1^{\mathrm{f}}(\mathbf{Q}_{\mu}[B_1])},$

where $\mathbf{Q}_{\mu}[B_1] := \{q | q := \mathbf{y} \mapsto \langle \mathbf{o}, \mathbf{y} - \mathbf{x} \rangle - \frac{\mu}{2} \| \mathbf{y} - \mathbf{x} \|^2, \mathbf{o} \in \mathbb{R}^d, \| \mathbf{o} \| \le B_1 \}.$

$$\mathbf{x} \|^2$$

Monotone functions over general convex sets

submodular function. Then, for all $\mathbf{x}, \mathbf{y} \in [0, 1]^d$, we have

$$\frac{\gamma^2}{1+\gamma^2}f(\mathbf{y}) - f(\mathbf{x}) \le \frac{\gamma}{1+\gamma^2} \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$$

where every $f \in \mathbf{F}$ may be extended to a function described in the above lemma. Then, for any $B_1 \ge M_1$, we have

$$\mathcal{R}_{\frac{\gamma^2}{1+\gamma^2},\operatorname{Adv}_1^{\mathsf{o}}(\mathbf{F},B_1)}^{\mathcal{A}} \leq \frac{\gamma}{1+\gamma^2} \mathcal{R}_{1,\operatorname{Adv}_1^{\mathsf{f}}(\mathbf{Q}_0[B_1])}^{\mathcal{A}}$$

Monotone functions over convex sets containing origin

Lemma 2. [[3]] Let $f : [0,1]^d \rightarrow \mathbb{R}$ be a non-negative γ -weakly monotone DR-submodular differentiable function and let F: $[0,1]^d \rightarrow \mathbb{R}$ be the beone of SO-OGA ([5]) or IA ([6]) and sefunction defined by $F(\mathbf{x}) := \int_0^1 \frac{\gamma e^{\gamma(z-1)}}{(1-e^{-\gamma})z} (f(z * \mathbf{x}) - f(\mathbf{0})) dz$. Then F is dif-lect a directed path that has the followferentiable and, if the random variable $\mathcal{Z} \in [0,1]$ is defined by the law $\int z \gamma(u-1)$

$$\begin{aligned} \forall z \in [0,1], \quad \mathbb{P}(\mathcal{Z} \leq z) &= \int_0^{-\frac{\gamma e^{-\gamma}}{1 - e^{-\gamma}}} du, \\ \text{nen we have } \mathbb{E}\left[\nabla f(\mathcal{Z} * \mathbf{x})\right] &= \nabla F(\mathbf{x}). \text{ Moreover, we have} \\ (1 - e^{-\gamma})f(\mathbf{y}) - f(\mathbf{x}) \leq \frac{1 - e^{-\gamma}}{\gamma} \langle \nabla F(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle. \end{aligned}$$

Theorem 3. Let $\mathcal{K} \subseteq [0,1]^d$ be a convex set containing the origin and let \mathbf{F} be an M_1 -Lipschitz function class over \mathcal{K} **Input:** First order query oracle, point **x** Sample $z \in [0, 1]$ according to Equation (1) where every $f \in \mathbf{F}$ may be extended to a Return the output of the query oracle at function described in the above lemma. $z * \mathbf{x}$ Then, for any $B_1 \ge M_1$, we have

$$\mathcal{R}_{1-e^{-\gamma},\operatorname{Adv}_{1}^{o}(\mathbf{F},B_{1})}^{\mathcal{A}} \leq \frac{1-e^{-\gamma}}{\gamma} \mathcal{R}_{1,\operatorname{Adv}_{1}^{f}(\mathbf{Q}_{0}[B_{1}])}^{\mathcal{A}}$$

where $\mathcal{A}' = \mathsf{OMBQ}(\mathcal{A}, \mathsf{BQMO}, \mathrm{Id}).$

Non-monotone functions over general convex sets

Lemma 3. [[4]] Let $f : [0,1]^d \rightarrow \mathbb{R}$ be a non-negative continuous DRsubmodular differentiable function and let $\underline{\mathbf{x}} \in \mathcal{K}$. Define $F : [0,1]^d \rightarrow \mathbb{R}$ as the function $F(\mathbf{x}) := \int_0^1 \frac{2}{3z(1-\frac{z}{2})^3} \left(f\left(\frac{z}{2} * (\mathbf{x} - \underline{\mathbf{x}}) + \underline{\mathbf{x}}\right) - f(\underline{\mathbf{x}}) \right) dz$. Then F is differentiable and, if the random variable $\mathcal{Z} \in [0,1]$ is defined by the law

$$\forall z \in [0, 1], \quad \mathbb{P}(\mathcal{Z} \le z)$$

then we have
$$\mathbb{E}\left[\nabla f\left(\frac{\mathbf{Z}}{2} * (\mathbf{x} - \underline{\mathbf{x}}) + \underline{\mathbf{x}}\right)\right] = \nabla F(\mathbf{x})$$
. Moreover, we $\frac{1 - \|\underline{\mathbf{x}}\|_{\infty}}{4} f(\mathbf{y}) - f\left(\frac{\mathbf{x} + \underline{\mathbf{x}}}{2}\right) \le \frac{3}{8} \langle \nabla F(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle.$

Theorem 4. Let $\mathcal{K} \subseteq [0,1]^d$ be a con-**Algorithm 3:** BQN vex set, $\underline{\mathbf{u}} \in \mathcal{K}, h := \|\underline{\mathbf{u}}\|_{\infty}$ and let \mathbf{F} be an M_1 -Lipschitz function class over \mathcal{K} [Input: First order query oracle, point \mathbf{x} Sample $z \in [0, 1]$ according to Equation 2 where every $f \in \mathbf{F}$ may be extended to a Return the output of the query oracle at function described in the above lemma. $\frac{z}{2} * (\mathbf{x} - \mathbf{x}) + \mathbf{x}$ Then, for any $B_1 \ge M_1$, we have

$$\mathcal{R}_{\frac{1-h}{4},\operatorname{Adv}_{1}^{0}(\mathbf{F},B_{1})}^{\mathcal{A}'} \leq \frac{3}{8}\mathcal{R}_{1,\operatorname{Adv}_{1}^{f}(\mathbf{Q}_{0}[B_{1}])}^{\mathcal{A}},$$

ON, $\mathbf{x} \mapsto \frac{\mathbf{x}_{t} + \mathbf{x}}{2}$).

where $\mathcal{A}' = \mathsf{OMBQ}(\mathcal{A}, \mathsf{BQN}, \mathbf{x} \mapsto \frac{\mathbf{x}_t + \mathbf{x}}{2}).$

McGill University/Mila

Algorithm 2: BQM0

 $=\int_{0}^{1}\frac{1}{3(1-\frac{u}{2})^{3}}du,$

/e have

Lemma 1. [[2]] Let $f : [0,1]^d \rightarrow \mathbb{R}$ be a non-negative γ -weakly monotone DR- We extend the applicability of meta-algorithms FOTZO, STB and FOTZO-2P in [1] to all α -regret (as opposed to 1-regret). Given an algorithm designed for stochastic first order feedback, FOTZO converts it to an algorithm that require stochastic zeroth-order feedback and FOTZO-2P converts it to an algorithm that require deterministic zeroth-order feedback. If the algorithm is semi-bandit, **STB** converts it to a **Theorem 2.** Let **F** be an M_1 -Lipschitz function class over a convex set $\mathcal{K} \subseteq [0,1]^d$ bandit algorithm. We also introduce a new meta-algorithm, namely **SFTT** converts algorithms that are designed for full-information feedback into algorithms that only require trivial query (e.g. semi-bandit/bandit).

> The figure below captures the applications that are mentioned in the tables. To obtain a result from the graph, let \mathcal{A} ing properties: (i) The path starts at one of the three nodes on the left. (ii) The path must be at least of length 1 and the edges must be the same color. (iii) If \mathcal{A} is IA, the path should not contain SFTT or OTB.

Online results

F	Set		Feedback		Reference	Аррх.	# of que
	$0 \in \mathcal{K}$			stoch.	[3] ± (*)	$1 - e^{-\gamma}$	1
		∇F	Full Information		[7]	$1 - e^{-1}$	$T^{\theta}(\theta \in [0,$
					Corollary 7-c	$1 - e^{-\gamma}$	1
			Semi-bandit	stoch.	[7]	$1 - e^{-1}$	-
					Corollary 7-c	$1 - e^{-\gamma}$	-
		F	Full Information	det.	Corollary 7-c	$1 - e^{-1}$	2
				stoch.	[7]	$1 - e^{-1}$	$T^{\theta}(\theta \in [0,$
ے ا					Corollary 7-c	$1 - e^{-\gamma}$	1
tor			Bandit	det.	[8] ‡‡	$1 - e^{-1}$	-
lou					[4] ‡(*)	$1 - e^{-\gamma}$	-
N				stoch.	[7]	$1 - e^{-1}$	-
					Corollary 7-c	$1 - e^{-\gamma}$	-
		∇F F	Full Information	stoch.	[7]	1/2	$T^{\theta}(\theta \in [0,$
	general		Semi-bandit	stoch.	[9]‡(*)	$\gamma^2/(1+\gamma^2)$	-
						$\frac{1}{2}$	-
					Corollary 7-b	$\frac{\gamma^2/(1+c\gamma^2)}{\gamma^2/(1+c\gamma^2)}$	-
			Full Information Bandit	det.	Corollary 7-b	$\frac{\gamma^2/(1+c\gamma^2)}{1/2}$	$\frac{2}{\pi^{\theta}(0-1)}$
				stoch.		1/2	$T^{\circ}(\theta \in [0,$
				stoch.		$\frac{1}{2}$	-
						$\frac{\gamma^2/(1+c\gamma^2)}{(1-b)/4}$	- $T \theta (0 - [0])$
	general	∇F	Full Information	stoch.	[/] [/] +(*)	(1-n)/4	$I^{\circ}(\theta \in [0, 1])$
					$[4] \downarrow ()$	(1-h)/4	1
he				stoch.		$\frac{(1-h)/4}{(1-h)/4}$	1
oto			Semi-bandit		[/]	(1-h)/4	_
Non-Mond		F		det	Corollary 7-d	$\frac{(1-h)/4}{(1-h)/4}$	
			Full Information	stoch.		$\frac{(1-h)/4}{(1-h)/4}$	$\frac{2}{T^{\theta}(\theta \subset [0])}$
					Corollary 7-d	(1-h)/4 (1-h)/4	$1 (v \in [0, 1])$
				det	[4] ±(*)	$\frac{(1-h)/4}{(1-h)/4}$	-
			Bandit		[7]	$\frac{(1-h)/4}{(1-h)/4}$	_
				stoch.	Corollary 7-d	(1 - h)/4	_

Mohammad Pedramfar and Vaneet Aggarwal. A unified framework for analyzing meta-algorithms in onli optimizatior arXiv preprint arXiv:2402.08621, 2024.

Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular maximization In Advances in Neural Information Processing Systems, 2017

- Qixin Zhang, Zengde Deng, Zaiyi Chen, Haoyuan Hu, and Stochastic continuous submodular maximization: Boostir function. In Proceedings of the 39th International Conference on Mach
- Qixin Zhang, Zongqi Wan, Zengde Deng, Zaiyi Chen, Xiac Zhang, and Yu Yang. Boosting gradient ascent for continuous DR-submodular
- arXiv preprint arXiv:2401.08330, 2024. Dan Garber and Ben Kretzu
- New projection-free algorithms for online convex optimiz regret guarantees In Proceedings of Thirty Fifth Conference on Learning Theory PMLR, 2022.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. In Advances in Neural Information Processing Systems, volum Associates, Inc., 2018.

[7] Mohammad Pedramfar, Yididiya Y. Nadew, Christopher Jo Vaneet Aggarwal.

Purdue University

Other meta-algorithms

Applications

				Offline r	esults		
\overline{F}	Set	Fee	dback	Reference	Аррх.	Complexity	
		∇F		[10]	$1 - e^{-\gamma}$	$O(1/\epsilon^3)$	
			stoch.	[11]	$1 - e^{-\gamma}$	$O(1/\epsilon^2)$	
	5 3			[3] ‡	$1 - e^{-\gamma}$	$O(1/\epsilon^2)$	
	\varkappa			Corollary 7-c	$1 - e^{-\gamma}$	$O(1/\epsilon^2)$	
notone	0 (F	det.	[12]	$1 - e^{-\gamma}$	$O(1/\epsilon^3)$	
				Corollary 7-c	$1 - e^{-\gamma}$	$O(1/\epsilon^2)$	
			stoch.	[12]	$1 - e^{-\gamma}$	$O(1/\epsilon^5)$	
				Corollary 7-c	$\frac{1-e^{-\gamma}}{2}$	$O(1/\epsilon^4)$	
\leq		∇F	stoch.	[2]‡	$\gamma^2/(1+\gamma^2)$	$O(1/\epsilon^2)$	
				[12]	$\gamma^2/(1+\gamma^2)$	$O(1/\epsilon^3)$	
	era			Corollary 7-b	$\frac{\gamma^2/(1+c\gamma^2)}{2}$	$O(1/\epsilon^2)$	
	en(F	det.	[13]	$\gamma^2/(1+\gamma^2)$	$O(1/\epsilon^3)$	
	00			Corollary /-b	$\gamma^2/(1+c\gamma^2)$	$O(1/\epsilon^2)$	
			stoch.	[13]	$\gamma^2/(1+\gamma^2)$	$O(1/\epsilon^3)$	
				Corollary /-b	$\gamma^2/(1+c\gamma^2)$	$O(1/\epsilon^4)$	
Non-Monotone		∇F	stoch.	[12]	$\frac{\gamma(1-\gamma h)}{\gamma'-1}\left(\frac{1}{2}-\frac{1}{2\gamma'}\right)$	$O(1/\epsilon^3)$	
				[4] ‡	(1-h)/4	$O(1/\epsilon^2)$	
	eral			Corollary 7-d	(1-h)/4	$O(1/\epsilon^2)$	
	gene		det	[12]	$\frac{\gamma(1-\gamma h)}{\gamma'-1} \left(\frac{1}{2} - \frac{1}{2^{\gamma'}}\right)$	$O(1/\epsilon^3)$	
		F		Corollary 7-d	(1 - h)/4	$O(1/\epsilon^2)$	
			stoch.	[12]	$\frac{\gamma(1-\gamma h)}{\gamma'-1}\left(\frac{1}{2}-\frac{1}{2^{\gamma'}}\right)$	$O(1/\epsilon^5)$	
				Corollary 7-d	(1 - h)/4	$O(1/\epsilon^4)$	

Online non-stationary results

F	Set		Feedback		Reference	Аррх.	regret type	lpha-regret
lonotone			Full Information	stoch.	Corollary 8-c	$1 - e^{-\gamma}$	dynamic	$T^{1/2}(1+P_T)^{1/2}$
		∇F			Corollary 7-c	$1-e^{-\gamma}$	adaptive	$T^{1/2}$
	<u>د</u> ک		Semi-bandit	stoch.	Corollary 7-c	$1-e^{-\gamma}$	adaptive	$T^{2/3}$
	χ	F	Full Information	det.	Corollary 8-c	$1 - e^{-\gamma}$	dynamic	$T^{1/2}(1+P_T)^{1/2}$
	0 (Corollary 7-c	$1 - e^{-\gamma}$	adaptive	$T^{1/2}$
				stoch.	Corollary 8-c	$1-e^{-\gamma}$	dynamic	$T^{3/4}(1+P_T)^{1/2}$
					Corollary 7-c	$1 - e^{-\gamma}$	adaptive	$T^{3/4}$
			Bandit	stoch.	Corollary 7-c	$1 - e^{-\gamma}$	adaptive	$T^{4/5}$
2		∇F	Semi-bandit	stoch.	Corollary 8-b	$\gamma^2/(1+c\gamma^2)$	dynamic	$T^{1/2}(1+P_T)^{1/2}$
	a	VI			Corollary 7-b	$\gamma^2/(1+c\gamma^2)$	adaptive	$T^{1/2}$
	Jer	F	Full Information	det.	Corollary 8-c	$\gamma^2/(1+c\gamma^2)$	dynamic	$T^{1/2}(1+P_T)^{1/2}$
	ger				Corollary 7-c	$\gamma^2/(1+c\gamma^2)$	adaptive	$T^{1/2}$
			Bandit	stoch.	Corollary 8-b	$\gamma^2/(1+c\gamma^2)$	dynamic	$T^{3/4}(1+P_T)^{1/2}$
					Corollary 7-b	$\gamma^2/(1+c\gamma^2)$	adaptive	$T^{3/4}$
Non-Ivionotone		∇F	Full Information	stoch.	Corollary 8-d	(1-h)/4	dynamic	$T^{1/2}(1+P_T)^{1/2}$
					Corollary 7-d	(1-h)/4	adaptive	$T^{1/2}$
	a		Semi-bandit	stoch.	Corollary 7-d	(1-h)/4	adaptive	$T^{2/3}$
	Jera	F	Full Information	det.	Corollary 8-d	(1-h)/4	dynamic	$T^{1/2}(1+P_T)^{1/2}$
	ger				Corollary 7-d	(1-h)/4	adaptive	$T^{1/2}$
				stoch.	Corollary 8-d	(1-h)/4	dynamic	$T^{3/4}(1+P_T)^{1/2}$
					Corollary 7-d	(1-h)/4	adaptive	$T^{3/4}$
			Bandit	stoch.	Corollary 7-d	(1-h)/4	adaptive	$T^{4/5}$

References

ine convex		Unified projection-free algorithms for adversarial DR-submodular optimization. In The Twelfth International Conference on Learning Representations, 2024.
7	[8]	Zongqi Wan, Jialin Zhang, Wei Chen, Xiaoming Sun, and Zhijie Zhang. Bandit multi-linear dr-submodular maximization and its applications on adversarial submodular bandits. In <i>International Conference on Machine Learning</i> , 2023.
I Yu Yang. g via non-oblivious hine Learning, 2022	[9]	Lin Chen, Hamed Hassani, and Amin Karbasi. Online continuous submodular maximization. In Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, April 2018.
ming Sun, Jialin maximization.	[10]	Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradient methods: From convex minimization to submodular maximization. <i>The Journal of Machine Learning Research</i> , 21(1):4232–4280, 2020.
ation with adaptive	[11]	Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Zebang Shen. Stochastic conditional gradient++: (non)convex minimization and continuous submodular maximization. <i>SIAM Journal on Optimization</i> , 30(4):3315–3344, 2020.
ne 31. Curran	[12]	Mohammad Pedramfar, Christopher Quinn, and Vaneet Aggarwal. A unified approach for maximizing continuous γ -weakly DR-submodular functions. <i>optimization-online preprint optimization-online</i> :25915, 2024.
hn Quinn, and	[13]	Mohammad Pedramfar, Christopher John Quinn, and Vaneet Aggarwal. A unified approach for maximizing continuous DR-submodular functions. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.