
Generative Forests

Richard Nock Mathieu Guillame-Bert



● We introduce new generative models for tabular data, Generative Forests:
○ Natively model any kind of tabular data, fast generation
○ Also enable efficient missing data imputation and density estimation

● Training: 
○ Efficient, boosting compliant
○ Reduction trick from binary supervised decision trees (top-down) induction
○ Natively processes data with missing values

● Implementation: standard top-down DT induction routines (many packages)
● Compute: cheap on purpose

Summary

Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

GFs vs tree-based generators: key difference

● An Adversarial Random Forest (ARF, Watson et al., AISTATS’23)

Set of trees, each leaf associated to a “complex distribution”



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

ARF – generation



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

ARF – generation, Step 1: pick a tree



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

ARF – generation, Step 2: stochastic activation of arcs



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

ARF – generation, Step 3: sample at the chosen leaf



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

ARF : good models have big trees 

Because of Step 1 which picks 1 tree (and then samples from it), each 
tree needs to be a good model separately (⇒ “big” trees)



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Generative Forests



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Generative Forest – model

+ empirical measure Set of trees



Generative Forest – generation 

Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24



Generative Forest – generation uses all trees and R

Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Uniform sampling



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Generative Forest – generation uses all trees and R

Using all trees gives a model that #bins space ∝ product of trees’ 
number of leaves, so small models can be very accurate 



Training: boosting using decision tree (DT) induction !

● Optimize a density ratio loss to fit B to A using a Bregman divergence

● Learn a GF G to fit empirical R
● Trick: “recycle” 2-class DT induction to distinguish positive = R vs negative = U 

and with prior 𝛑 (=P[Y=1]) – same training at the core as e.g. CART, C4.5, etc. !
● Rate: using a weak learning assumption, get at iteration J with T<J trees GF G.,

𝛑 = user-fixed prior, U = uniform distribution 
see paper for generator 𝜑 



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Experiment 1: “power” of GFs vs single trees

● Small GFs with just stumps can approximate non-boxy / complex distributions



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Experiment 2: missing data imputation

● Comparison vs MICE with random forests (4 000 total #trees !) on UCI 
analcatdata_supreme (more results in paper)

perr : metric for 
categorical 
variables
RMSE : metric for 
numerical 
variables



Nock & Guillame-Bert, “Generative Forests”, NeurIPS’24

Main experiment: quality of generated data (summary)

● Contenders of different types: CT-GAN, Vine copulas AE, Forest Flow (FF), ARFs
● Four metrics: optimal transport ↓, coverage ↑, density ↑ and F1 measure ↓
● Our models’ size: 

○ “Medium”: T = 500 trees, total #splits J = 2 000 (average #splits/tree = 4)
○ “Small”: T = 200 trees, total #splits = 500

● Summary for Medium: substantially better than NN based methods (CT-GAN, 
VCAE) & ARF on all metrics; better than FF. For Small: same picture vs NNs, still 
better than ARF on 3 metrics, on par with FF except density

● Compute / complexity: FF & ARF model sizes huge compared to ours; NNs 
required “big” desktop (our models = low-end laptop)



Thank You
Richard Nock
Mathieu Guillame-Bert

Google Research
Google


