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3D MRI under motion
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The three steps of MotionT TT

1. Pre-training
2. Test-time-training for motion estimation

3. Reconstruction
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Step 1: Pre-training

Goal: Train 2D model for motion-free MR reconstruction
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Step 2: Test-time-training for motion estimation

Goal: Estimate motion trajectory m € R®*/
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Step 3: Reconstruction

Goal: Obtain final reconstruction based on estimated motion parameters using, e.g.,

» classical reconstruction
» deep-learning based iterative reconstruction

» deep-learning based end-to-end reconstruction
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Quantitative evaluation
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[1] Cordero-Grande et al. "Sensitivity Encoding for Aligned Multishot Magnetic Resonance Reconstruction”. In: IEEE Transactions on Computational Imaging (2016).
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Quantitative evaluation
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[1] Cordero-Grande et al. "Sensitivity Encoding for Aligned Multishot Magnetic Resonance Reconstruction”. In: IEEE Transactions on Computational Imaging (2016).
[2] Al-Masni et al. "Stacked U-Nets with Self-Assisted Priors towards Robust Correction of Rigid Motion Artifact in Brain MRI". In: Neurolmage (2022). 8/12



Qualitative evaluation
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Summary

MotionTTT is
» the first deep learning based approach towards motion estimation in 3D MRI,
» outperforming classical optimization in terms of estimation accuracy and speed,
» outperforming deep learning based end-to-end motion correction,
» not relying on motion simulation during pre-training,

» not interfering with the clinical work routine.

10/12



» Paper: https://arxiv.org/abs/2409.09370

» Implementation: https://github.com/MLI-1ab/MRI_MotionTTT

» Poster session: Wednesday, December 11th, 2pm
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https://arxiv.org/abs/2409.09370
https://github.com/MLI-lab/MRI_MotionTTT

Thank you for watching!



