Enhancing Preference-based Linear Bandits via Human Response Time

Shen Li^{*1}, Yuyang Zhang^{*2}, Zhaolin Ren², Claire Liang¹, Na Li², Julie A. Shah¹

¹ MIT

Harvard John A. Paulson **School of Engineering** and Applied Sciences

² Harvard * First two authors have equal contribution

Binary Choices Are Widely Used to Align AI Systems With Human Preferences

NETFLIX	Home TV Shows Movies New & Popular My List Brow	vse by Languages	
MA	N OF STE	EL	
Drifter Clar when an ev springs into	k Kent must keep his powers hidden from t vil general plans to destroy Earth, the Man o o action.	the world, but of Steel	
► Play	y (i) More Info		

Q: why do our eyebrows and eyelashes stop growing after a certain length?

A: Hair has different cycles[1]. It grows for a certain amount of time before falling out and starting fresh. For eyelashes, the cycle is much shorter (a few weeks) whereas eyebrows grow more slowly and have a cycle closer to two months. The hair on your head has a cycle of several years, allowing it to grow much longer. Some people have longer arm or leg hair because they have a faster speed of growth or a longer cycle. Look it up, it's really interesting

[1] https://www.philipkingsley.co.uk > hair-science > hair-g.

 $\frac{\text{Plausible}}{\text{answer?}} \bigcirc \text{Yes} \bigcirc \text{No} \bigcirc$

Not sure

(Bıyık et al., 2022)

Choices Provide Limited Information About Preference Strengths. Our Work Resolves This by Incorporating Response Times.

Which one would you like during the poster session?

Long response time

Weak preference

Short response time

Strong preference

Research Questions and Key Contributions

Q1. *How* to combine response times with choices in preference learning?

Response times

Choices

Q2. When do response times improve preference learning?

Improvement due to using response times

Problem Formulation: Linear Bandit With Binary Choice and Response Time Feedback

- Human preference: $\theta \in \mathbb{R}^d$
- Each arm: z with a utility $z^{\mathsf{T}}\theta$
- Each query: $x := z_1 z_2$ with a utility difference $x^T \theta$

Goal: \hat{z} is the best arm z^* .

The Magnitude of Utility Difference Is Proportional to Expected **Choice and Inversely Proportional to Expected Response Time**

Our Novel θ Estimator Uses Choices and Response Times, While Prior Methods Only Use Choices

Intuitively, for Queries With Strong Preferences, **Response Times Provide Information That Complements Choices**

Intuitively, for Queries With *Strong* Preferences, Response Times Provide Information That Complements Choices

Strong pref

Strong pref

Intuitively, for Queries With Strong Preferences, **Response Times Provide Information That Complements Choices**

Strong pref

To Verify This Insight, We Use a Synthetic Problem to Compare Estimator Performance

A bandit problem with weak pref

0.1

Scaling factor c that scales each arm z to $c \cdot z$

A bandit problem with strong pref

2. Sample 50 queries and gather feedback

(The synthetic problem is from Tao et al., 2018)

Empirical Result Confirms That for Queries With Strong Preferences, **Response Times Provide Information That Complements Choices**

Asymptotic Variances Shows That for Queries With Weak Preferences, **Choices Provide a Limited Amount of Information**

If using
$$\hat{\theta}_{choices}$$
, then
 $AVar_z = z^T \left(\sum_{x \in \mathcal{X}} a^2 Var[c_x] xx^T \right)^{-1} z$

Given a fixed dataset that contains n choices and response times for each query in \mathcal{X} , then, for each arm z, the utility estimation error satisfies $\sqrt{n} \left(z^{\mathsf{T}} \widehat{\theta} - z^{\mathsf{T}} \theta \right) \xrightarrow{D} \mathcal{N} \left(0, \operatorname{AVar}_{z} \right)$.

Asymptotic Variances Confirms That for Queries With Strong Preferences, **Response Times Provide Information That Complements Choices**

Given a fixed dataset that contains n choices and response times for each query in \mathcal{X} , then, for each arm *z*, the utility estimation error satisfies $\sqrt{n} \left(z^{\mathsf{T}} \widehat{\theta} - z^{\mathsf{T}} \theta \right) \xrightarrow{D} \mathcal{N} \left(0, \operatorname{AVar}_{z} \right)$.

This Plot Does Not Provide Definitive Conclusions for Comparing **Response Times and Choices for Queries With** *Weak* **Preferences**

Given a fixed dataset that contains n choices and response times for each query in \mathcal{X} , then, for each arm z, the utility estimation er

Fror satisfies
$$\sqrt{n} \left(z^{\mathsf{T}} \widehat{\theta} - z^{\mathsf{T}} \theta \right) \xrightarrow{D} \mathcal{N} \left(0, \operatorname{AVar}_{z} \right).$$

Integrating Both Estimators Into the Generalized Successive Elimination Algorithm to Identify the Best Arm Within a Fixed Time Budget

• Split the total budget evenly into multiple phases.

 Recommended the remainir Performance measure: \mathbb{P}

ng arm
$$\hat{z}$$
.
 $\hat{z} \neq z^*$]

Empirical Result of Bandit Learning Shows That Incorporating Response Times Reduces Learning Errors

(Smith and Krajbich, 2018)

(Clithero, 2018)

(Krajbich, et al., 2010)

Key Contributions: The First to Use **Response Times for Preference Learning**

- A utility estimator using both choices and response times.
- An insight: response times from queries with strong preferences provide extra information that complements choices.

