
 1

Enhancing Preference-based Linear Bandits 
via Human Response Time 

Shen Li*1, Yuyang Zhang*2, Zhaolin Ren2, Claire Liang1, Na Li2, Julie A. Shah1


1 MIT    2 Harvard

* First two authors have equal contribution



(Menick et al., 2022)
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Binary Choices Are Widely Used to 
Align AI Systems With Human Preferences

(Bıyık et al., 2022)

Robot path 1 Robot path 2



Strong preference

Short response time

Weak preference

Long response time
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Choices Provide Limited Information About Preference Strengths. 
Our Work Resolves This by Incorporating Response Times.

(Alós-Ferrer, et al., 2021)

Which one would you like 
during the poster session?
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Research Questions and Key Contributions
Q1. How to combine response times with choices in preference learning?
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Q2. When do response times improve preference learning?
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Problem Formulation: Linear Bandit With 
Binary Choice and Response Time Feedback

Query x {Choice cx ∈ {1, − 1}
Response time tx > 0

Algorithm

Recommend arm ̂z

If a time budget is exhausted, then terminate.

Goal:  is the best arm .̂z z*

1. Estimate θ2. Decide the queries 
to sample next

• Human preference: 

• Each arm:  with a utility 

• Each query:  with a utility difference 

θ ∈ ℝd

z z⊤θ
x := z1 − z2 x⊤θ x = z1 − z2

z1 z2



Time  (sec)τ

Evidence  Ex,τ

6 Wagenmakers et al., 2007.

EZ-Diffusion Model Links Utility Differences, 
Choices, and Response Times

At time :

    

    where 

τ
Ex,τ = x⊤θ ⋅ τ + Bτ

Bτ ∼ 𝒩(0,τ)

−a

a Choose  ( )z1 cx = 1

Choose  ( )z2 cx = − 1

Query x = z1 − z2

Response time tx
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Weak pref Strong prefStrong pref

The Magnitude of Utility Difference Is Proportional to Expected 
Choice and Inversely Proportional to Expected Response Time
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Our Novel  Estimator Uses Choices and Response Times, 
While Prior Methods Only Use Choices
θ

Given a dataset with i.i.d. choices and response times from various queries:

Our estimator uses both choices and response times:

Coefficient Target (estimated from data)Input

x⊤ θ
a

=
𝔼[cx]
𝔼[tx]

linear regression with squared losŝθ choices, times ←

ℙ [cx = 1] =
1

1 + exp (−cx ⋅ x⊤ ⋅ 2aθ )
(Same as the Bradley Terry model)

Prior methods only use choices:

logistic regression̂θ choices ←
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Intuitively, for Queries With Strong Preferences, 
Response Times Provide Information That Complements Choices
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Weak pref
x⊤θ

𝔼[cx]
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x⊤θ
Strong prefStrong pref

𝔼[cx]
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x⊤θ
Strong prefStrong pref

𝔼[cx]

𝔼[tx]



To Verify This Insight, We Use a Synthetic Problem 
to Compare Estimator Performance

12 (The synthetic problem is from Tao et al., 2018)
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1. Computes an experimental design:
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ℙ [ ̂z ≠ z*]
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Asymptotic Variances Shows That for Queries With Weak Preferences, 
Choices Provide a Limited Amount of Information
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Given a fixed dataset that contains  choices and response times for each query in ,

then, for each arm , the utility estimation error satisfies .

n 𝒳
z n (z⊤ ̂θ − z⊤θ) D 𝒩 (0, AVarz)

If using , then


    

̂θ choices

AVarz = z⊤ ( ∑
x∈𝒳

a2 Var[cx] xx⊤)
−1

z
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Response Times Provide Information That Complements Choices
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Weak prefStrong pref Strong pref
x⊤θ
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Given a fixed dataset that contains  choices and response times for each query in ,

then, for each arm , the utility estimation error satisfies .

n 𝒳
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If using , then
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This Plot Does Not Provide Definitive Conclusions for Comparing 
Response Times and Choices for Queries With Weak Preferences
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Weak prefStrong pref Strong pref
x⊤θ

Example: assume each :x⊤θ ∈ [−3,3]
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Given a fixed dataset that contains  choices and response times for each query in ,

then, for each arm , the utility estimation error satisfies .

n 𝒳
z n (z⊤ ̂θ − z⊤θ) D 𝒩 (0, AVarz)



Integrating Both Estimators Into the Generalized Successive Elimination 
Algorithm to Identify the Best Arm Within a Fixed Time Budget

17 (Azizi et al., 2022)

• Split the total budget evenly into multiple phases.

Performance measure: ℙ [ ̂z ≠ z*]
• Recommended the remaining arm .̂z

Compute an 
experimental design

Estimate  and eliminate armsθ

Sample queries till the 
budget is exhausted

• For each phase:



Empirical Result of Bandit Learning Shows That 
Incorporating Response Times Reduces Learning Errors
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Generalized Successive 
Elimination with ̂θ choices

Generalized Successive 
Elimination with ̂θ choices, times

(Clithero, 2018) (Krajbich, et al., 2010)
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Key Contributions: The First to Use 
Response Times for Preference Learning
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• A utility estimator using both choices and response times.


• An insight: response times from queries with strong preferences 
provide extra information that complements choices.
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