

compositional PAC-Bayes:

generalization of GNNs with persistence and beyond

Kirill Brilliantov ETH Zurich

Amauri H. Souza Federal Institute of Ceará

Vikas K. Garg, YaiYai Ltd & Aalto University

motivation

overview of the contribution

main lemma: PAC Bayes

simplified PAC-Bayes [Neyshabur et. al. 2017]

let $f : \mathscr{X} \square \mathbb{R}^k$ be any model with parameters w and let \mathcal{P} be a distribution over parameters, **independent** of the \mathscr{D} .

then for any γ , $\delta > 0$ with probability at least 1 - δ over i.i.d. training set \mathscr{P} of size m drawn according to \mathscr{D} , for any w and any random perturbation $u \sim \mathscr{Q}(w)$ such that $\mathbb{P}(\sup_{\mathbf{x}} |f(\mathbf{x}; w) - f(\mathbf{x}; w + u)|_{\infty} < \frac{1}{4}\gamma) > \frac{1}{2}$ w.r.t \mathscr{Q} we have

generalization gap² = \mathcal{O} { D_{KL}($\mathcal{Q}(w) \parallel \mathcal{P}$); 1/m; log (6m/ δ) }

main lemma

let $f: \mathscr{X} \square \mathbb{R}^k$ be any model with parameters $w = vec\{W_1, ..., W_n\}$; and $T > 0, S_1, ..., S_n > 0$ which may depend on w and parameter-independent $C_1 > 0, C_2 > 0, 0 < \eta_1, ..., \eta_n < 1$ s.t.

- we can upper bound $\sup_{\mathbf{x}} |f(\mathbf{x}; \mathbf{w})|_2$ with C_1, T
- for $u = vec\{U_1, ..., U_n\}$ with $||U_i||_2 < \eta_i S_i$ we can upper bound $\sup_{\mathbf{x}} |f(\mathbf{x}; w) - f(\mathbf{x}; w + u)|_2$ with $C_2, T, S_i, ||U_i||_2$
- T and S_i are connected: we can upper bound the sum of S_i with T
- η_i and C_1 , C_2 are connected: we can upper bound the min of η_i with C_1 , C_2

then for any γ , $\delta > 0$ with probability at least 1 - δ over i.i.d. training set *S* of size *m* drawn according to \mathscr{D} we provide generalization gap depending on γ , δ , *n*, *m*, *C*₁, *C*₂, *T*, *S*_{*i*}, $|w|_2$, min of η_i .

applying main lemma to MLPs, GNNs and PersLay

defining:

- T, S_1, \dots, S_n as spectral norms of weight matrices
- $C_1, C_2; \eta_1, \ldots, \eta_n$ according to perturbation analysis [Neyshabur et al. 2017; Liao et. al. 2020]

we can apply main lemma to MLPs and GNNs

for PersLay [Carrière et. al. 2020] we provide:

- perturbation analysis
- main lemma variables definition

compositional lemmas

lemma (two models in parallel)

lemma (composition with MLP)

corollary (GNNs with persistence)

experiments

conclusion

- main lemma: general PAC-Bayes lemma
 - can be applied to well-studied models
 - can be applied to persistence homology
 - can be applied to **compositions**
- empirical evaluation shows strong correlation

Thank you for attention!