FAIRNESS WITHOUT HARM: AN INFLUENCE-GUIDED ACTIVE SAMPLING APPROACH **Jinlong Pang[†], Jialu Wang[†], Zhaowei Zhu[‡], Yuanshun Yao*, Chen Qian[†], Yang Liu[†]** †University of California, Santa Cruz ‡Docta.ai [∗]Meta AI

UNIVERSITY OF CALIFORNIA

Problems & Solutions (Overview)

Fairness-accuracy tradeoff phenomenon:

Main goal: Continue training on new active sampling data to find a fair classifier $f \in \mathcal{F}$ using ERM with CE loss:

The tradeoff can be explained by the Pareto frontier where given certain resources (e.g., data), reducing the fairness violations often comes at the cost of lowering the model accuracy.

Motivation:

Acquiring more data could help shift to a better Pareto frontier toward low fairness disparity and lower error rates.

Finding influential examples SGD process: One step gradient descent on newly acquired ′ is $\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \cdot \partial_{\mathbf{w}_t} \ell(\mathbf{w}_t, z')$ **Influence of accuracy/fairness:** The influences of example z' on one validation example z_n° are: \int Ideal accuracy: $\text{Infl}_{\text{acc}}(z', z^{\circ}_n)$ $\hat{v}_n^{\circlearrowleft}:=\ell({\mathbf w}_{t+1}, z_n^{\circledcirc})$ $\binom{^\circ}{n} - \ell(\mathbf{w}_t)$, z \circ \overline{n}) Ideal fairness: $\mathsf{Infl}_{\mathsf{fair}}(z', z^{\circ}_n)$ $\phi^{(0)}_n := \phi(\mathbf{w}_{t+1}, z_n^{\circ})$ $\hat{\phi}_n^{(0)}-\phi(\mathbf{w}_t)$, z \circ \overline{n}) **We prove: Fairness/Accuracy Influence (Lemma 4.1 & Lemma 4.2)** The accuracy/fairness influences of example z' on \mathbf{Q}_v are: $\sqrt{ }$ \int Infl_{acc} $(z') := \mathsf{MEAN}$ $\overline{\mathcal{L}}$ $\sqrt{ }$ Infl_{acc} (z', z_n°) $\binom{8}{n}$ \setminus \approx MEAN $\sqrt{ }$ $\langle \partial \ell({\mathbf w}_t, z'), -\eta \partial \ell({\mathbf w}_t) \rangle$, z \circ \overline{n} \rangle \setminus $\mathsf{Infl}_{\mathsf{fair}}(z') := \mathsf{MEAN}$ $\sqrt{ }$ Infl_{fair} (z', z_n°) $\binom{8}{n}$ \setminus \approx MEAN $\sqrt{ }$ $\langle \partial \ell({\mathbf w}_t, z'), -\eta \partial \phi({\mathbf w}_t) \rangle$, z \circ \overline{n} \rangle \setminus **Intuition:** Aligned gradients (reflected by a negative influence score) indicate that this example contributes to improved fairness and accuracy. **Pre-labeling:** Utilize lowest-influence labels before querying true labels $\hat{y}' = \mathop{\rm argmin}_{k \in \{1, \cdots, K\}} \left| \mathop{\mathsf{Infl}}\nolimits_{\mathsf{acc}}(x', k) \right|$ **Sampling strategy:** Select those samples via influence scores $\mathbf{P} \leftarrow \mathbf{P} \cup \{z' \mid \mathsf{Infl}_{\mathsf{acc}}(z') \leq 0, \mathsf{Infl}_{\mathsf{fair}}(z') \leq 0\}$ **How more data improve fairness without harm? Fairness definition** (Risk disparity) The model w would be fair if it achieves the same expected risk on target dataset Q and its group-level subset (Q_k), that is, $\mathcal{R}_{\mathcal{Q}_k}(\mathbf{w}) - \mathcal{R}_{\mathcal{Q}}(\mathbf{w}).$ **Proposition** (Proposition 3.1 in the paper) Under appropriate conditions, risk disparity can serve as a lower bound for DP or EOd-based fairness disparities. **Generalization error bound, Theorem 5.1** The generalization error bound of the model trained on P is $\sqrt{2}$

 $\mathcal{R}_{\mathcal{Q}}(\mathbf{w}) \leq G_{P} \cdot \mathsf{dist}(\mathcal{P},\mathcal{Q})$ distribution shift $+$ $\log(4/\delta)$ $2|P|$

example
$$
z'
$$
 is
\ne:

$$
- \ell(\mathbf{w}_t, z_n^{\circ})
$$

-
$$
\phi(\mathbf{w}_t, z_n^{\circ})
$$

$$
\left.\left.-\eta\partial\ell(\mathbf{w}_t,z_n^\circ)\right>\right)\Biggr| \\ -\eta\partial\phi(\mathbf{w}_t,z_n^\circ)\rangle\biggr)\Biggr|
$$

One-sentence summary:

We propose a training sensitive attributes-free and tractable active data sampling algorithm solely relying on sensitive attributes on a small validation set.

Solutions: Comparing the gradient direction of the new data with that of the validation set.

Setup

$$
\sum_{n\in \mathbf{P}} \ell(f(x_n;\mathbf{w}),y_n)+\underbrace{\ell(f(x';\mathbf{w}),y')}_{\text{new inquired examples}}
$$

- Original train set: $\mathbf{P} := \{z_n = (x_n, y_n)\}\.$
- \bullet Unlabeled set: $\mathbf{U} := \{z'_n = (x'_n)\}$ $\binom{n}{n} \}$ without label.
- Validation set: $\mathbf{Q}_{\mathbf{v}}:=\{z_n^{\circ}=(x^{\circ},y^{\circ},s^{\circ})\}$ with sensitive attributes s° .
- \bullet y' is the inquired label for unlabeled examples.
- CE loss $\ell(\cdot,\cdot)$, fairness loss $\phi(\cdot,\cdot)$.

Upper bound of risk disparity, Theorem 5.2

The upper bound of risk disparity is

 $\mathcal{R}_{\mathcal{Q}_k}(\mathbf{w}) - \mathcal{R}_{\mathcal{Q}}(\mathbf{w}) \leq G_k \cdot \mathsf{dist}(\mathcal{P}_k,\mathcal{Q}_k) + G_P \cdot \mathsf{dist}(\mathcal{P},\mathcal{Q})$

 $+ 4L^2G^2 \cdot \mathsf{dist}(P_k, P)^2 + \Upsilon$

group gap

Take-aways:

- Common fair approaches (i.e., reducing group gap) incur additional distribution shifts, leading to an accuracy drop.
- Once the negative impact of distribution shifts can be controlled, it is possible to achieve fairness with harm. (**Our approach**)

Empirical results

Comparison of test accuracy & fairness disparity

- Fairness metrics: DP, EOp, EOd
- Datasets: CelebA, Adult, Compas

Impact of validation set size

Table: Test accuracy & Fairness disparity

Code