UNIVERSITY OF CALIFORNIA

Problems & Solutions (Overview)

Fairness-accuracy tradeoff phenomenon:

The tradeoff can be explained by the Pareto frontier where given certain resources (e.g., data), reducing the fairness violations often comes at the cost of lowering the model accuracy.

Motivation:

Acquiring more data could help shift to a better Pareto frontier toward low fairness disparity and lower error rates.

One-sentence summary:

We propose a training sensitive attributes-free and tractable active data sampling algorithm solely relying on sensitive attributes on a small validation set.

Solutions: Comparing the gradient direction of the new data with that of the validation set.

Setup

Main goal: Continue training on new active sampling data to find a fair classifier $f \in \mathcal{F}$ using ERM with CE loss:

$$\sum_{n \in \mathbf{P}} \ell(f(x_n; \mathbf{w}), y_n) + \underbrace{\ell(f(x'; \mathbf{w}), y')}_{\text{new inquired examples}}$$

- Original train set: $\mathbf{P} := \{z_n = (x_n, y_n)\}.$
- Unlabeled set: $\mathbf{U} := \{z'_n = (x'_n)\}$ without label.
- Validation set: $\mathbf{Q}_{\mathbf{v}} := \{z_n^{\circ} = (x^{\circ}, y^{\circ}, s^{\circ})\}$ with sensitive attributes s° .
- y' is the inquired label for unlabeled examples.
- CE loss $\ell(\cdot, \cdot)$, <u>fairness loss</u> $\phi(\cdot, \cdot)$.

FAIRNESS WITHOUT HARM: AN INFLUENCE-GUIDED ACTIVE SAMPLING APPROACH Jinlong Pang[†], Jialu Wang[†], Zhaowei Zhu[‡], Yuanshun Yao^{*}, Chen Qian[†], Yang Liu[†] [†]University of California, Santa Cruz [‡]Docta.ai ^{*}Meta AI

 $\mathcal{R}_{\mathcal{Q}}(\mathbf{w}) \leq \underbrace{G_P \cdot \mathsf{dist}(\mathcal{P}, \mathcal{Q})}_{\mathsf{distribution \ shift}} + \bigvee$

$$egin{aligned} &-\ell(\mathbf{w}_t,z_n^\circ)\ &-\phi(\mathbf{w}_t,z_n^\circ) \end{aligned}$$

$$-\eta \partial \ell(\mathbf{w}_t, z_n^{\circ}) \rangle \Big) \\ -\eta \partial \phi(\mathbf{w}_t, z_n^{\circ}) \rangle \Big)$$

Upper bound of risk disparity, Theorem 5.2

The upper bound of risk disparity is

 $\mathcal{R}_{\mathcal{Q}_k}(\mathbf{w}) - \mathcal{R}_{\mathcal{Q}}(\mathbf{w}) \leq G_k \cdot \mathsf{dist}(\mathcal{P}_k, \mathcal{Q}_k) + G_P \cdot \mathsf{dist}(\mathcal{P}, \mathcal{Q})$

distribution shif $+ 4L^2G^2 \cdot \operatorname{dist}(P_k, P)^2 + \Upsilon$

group gap

Take-aways:

- Common fair approaches (i.e., reducing group gap) incur additional distribution shifts, leading to an accuracy drop.
- Once the negative impact of distribution shifts can be controlled, it is possible to achieve fairness with harm. (**Our approach**)

Empirical results

Comparison of test accuracy & fairness disparity

- Fairness metrics: DP, EOp, EOd
- Datasets: CelebA, Adult, Compas

Impact of validation set size

Table: Test accuracy & Fairness disparity

	CelebA - Smiling		
	(Test_acc↑, DP↓)	(Test_acc \uparrow , EOp \downarrow)	(Test_acc↑,
$1 \times$	(0.848, 0.084)	(0.876, 0.031)	(0.864, 0.0
$1/2 \times$	(0.872, 0.105)	(0.891, 0.042)	(0.880, 0.0
$1/5 \times$	(0.872, 0.117)	(0.863, 0.057)	(0.886, 0.0

