
Harnessing small projectors & multiple views for efficient vision pretraining

Summary Results
1. Implicit bias of gradient descent on feature learning dynamics

Methods

Open Problems
❖ Can we improve theoretical understanding of feature learning in Joint 

Embedding Predictive Architecture (JEPA) pipelines?
❖ Beyond autoregressive losses: How do we improve pretraining efficiency of 

autoregressive and JEPA models for vision and other modalities?
Fig 2: Design of existing SSL algorithms relies on heuristics. (A) 
Augmentation graphs are common in vision pretraining, providing 
generalizable features for downstream tasks. (B) We propose an equivalent 
loss function for SSL pretraining that recovers the same eigenfunctions more 
efficiently than existing approaches. (C) A canonical framework for 
non-contrastive SSL, here VICReg (Bardes et al. 2021).
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2. Low-dimensional projectors can yield good representations

3.   Multiple augmentations improve performance and convergence

4. Multi-augmentation improves sample efficiency

Moving the Pareto frontier by leveraging multiple augmentations

Fig 4: Higher orthogonality constraint, β, for lower projector dimensionality 
achieved similar performance over a wide range of projector dimensions across 
(A) CIFAR-10, (B) STL-10, and (C) Imagenet-100 datasets.

Fig 5: Better representation learning performance and convergence achieved 
with 4/8 augmentations instead of 2 across BarlowTwins for (A) CIFAR-10, (B) 
STL-10, and (C) Imagenet-100 pretraining.

Fig 6: Similar representation learning performance achieved with significantly 
fewer unique samples in the pretraining dataset across BarlowTwins for (A) 
CIFAR-10, (B) STL-10, and (C) Imagenet-100 pretraining.

Fig 3: Understanding the feature learning dynamics of SSL. (A) 2D inputs, point 
clouds corresponding to different input augmentations. (B, D) Learned feature 
space under low and high orthogonalization constraint, respectively. (C,E) 
Corresponding singular values of the learned feature space.
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Reformulated SSL objective:

Recent progress in self-supervised (SSL) visual representation learning 
has led to development of several frameworks, that typically rely on 
augmentations of images and leverage different loss formulations. 

How can we improve the sample and compute efficiency 
of current SSL pipelines, enabling cheaper pretraining? 

We build on theory and recent analytical results to design practical 
recommendations for competitive and efficient SSL:
➔ Promote higher orthogonalization among learned features
➔ Use multiple views of each image to optimize for invariance criterion

Fig 1: Proposed multi-view SSL pipeline

In a low-data regime, using diverse & multiple augmentations can 
be as effective as acquiring more unique samples.

Fig 7: Using  more than 2 
augmentations (4, 8 or more) 
with a fraction of the samples 
in the pretraining dataset 
improves overall Pareto 
frontier. Pretraining runtime 
can be improved up to ~2 
times by using multiple 
augmentations, compared to 
the standard 2-augmentation 
SSL pipeline.

Runtime-performance Pareto frontier: Increasing the number of pretraining 
samples increases runtime but also yields better features, i.e. lower error rate on 
downstream tasks.

Start with low-dimensional projector, using β = O(1/ pdim)



Harnessing small projectors & multiple views for efficient vision pretraining

Summary
Recent progress in self-supervised (SSL) visual representation learning 
has led to the development of several different proposed frameworks that 
rely on augmentations of images but use different loss functions. We 
build on theory and recent analytical results to design practical 
recommendations for competitive and efficient SSL, by demonstrating the 
following: 
● The idealized loss in SSL frameworks can be reformulated to a 

functionally equivalent loss that is more efficient to compute. 
● Due to the implicit bias of using gradient descent to minimize 

reformulated loss function, a stronger orthogonalization constraint 
with a reduced projector dimensionality is necessary to yield good 
representations. 

● The linear readout performance when training a ResNet-backbone on 
CIFAR, STL and Imagenet datasets can be improved with multiple 
augmentations, thereby improving the dynamics of feature learning.

● Data augmentations allow reducing the pretraining dataset size by 
up to 2× while maintaining downstream accuracy simply by using 
more data augmentations. 

Results
1. Implicit bias of gradient descent on feature learning dynamics

Methods

Open Problems
H.

Fig 1: Design of existing SSL algorithms relies on heuristics. (A) 
Augmentation graphs are common in vision pretraining, providing 
generalizable features for downstream tasks. (B) We propose an equivalent 
loss function for SSL pretraining that recovers the same eigenfunctions more 
efficiently than existing approaches. (C) A canonical framework for 
non-contrastive SSL, here VICReg (Bardes et al. 2021)
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2. Low-dimensional projectors can yield good representations

3.   Multiple augmentations improve performance and convergence

4. Multi-augmentation improves sample efficiency

5. A specific target error level can be achieved with either a larger 
pretraining dataset or more augmentations 

Fig 3: Higher orthogonality constraint, β, for lower projector dimensionality 
achieved similar performance over a wide range of projector dimensions across 
(A) CIFAR-10, (B) STL-10, and (C) Imagenet-100 datasets.

Fig 4: Better representation learning performance and convergence achieved 
with 4 augmentations instead of 2 across BarlowTwins for (A) CIFAR-10, (B) 
STL-10, and (C) Imagenet-100 pretraining.

Fig 5: Similar representation learning performance achieved with significantly 
fewer unique samples in the pretraining dataset across BarlowTwins for (A) 
CIFAR-10, (B) STL-10, and (C) Imagenet-100 pretraining.

Fig 6: Using  more than 2 augmentations with a fraction of the dataset improves 
overall Pareto frontier, sped runtime up to ~ 2×.

Fig 2: Understanding the feature learning dynamics of SSL. (A) 2D inputs, with 
each point indicating an augmented version of an input. (B, D) Learned feature 
space under low and high orthogonalization constraint, respectively. (C,E) 
Corresponding singular values of the learned feature space.
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Reformulated SSL objective:


