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Online Convex Optimization (OCO)

for t = 1, 2, . . . ,T do
Learner selects xt from convex body K ⊂ Rd (K : feasible set)
Environment reveals convex loss function ft : K → R (often bounded & Lipschitz)
Learner incurs loss ft(xt) and observes ∇ft(xt) (or ft)

Learner’s Goal: Minimize the (pseudo-)regret RT

RT = max
x∈K

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(x)

]
.

The optimal decision x⋆ is defined as x⋆ ∈ argminx∈K E
[∑T

t=1 ft(x)
]
.

When loss function ft is a linear function, i.e., ft(·) = ⟨gt , ·⟩ for some gt ∈ Rd , this problem
is called online linear optimization (OLO).
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Application

• Stochastic (convex) optimization (via online-to-batch conversion)
e.g., Stochastic Gradient Descent, AdaGrad, . . .

• Non-convex non-smooth optimization

• Online linear classification
e.g., logistic loss ft(x) = ln(1 + exp(−yt · ⟨x , zt⟩)) for data-label pair (zt , yt)
• Online linear regression
e.g., squared loss ft(x) = (⟨x , zt⟩ − yt)

2

• Bandits (multi-armed bandits, linear bandits, MDPs, . . . )

• Online portfolio

• Learning in games

• . . .
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Lower Bound and Fast Rates for Curved Losses

Online Gradient Descent (OGD), xt+1 ← ΠK (xt − ηt∇ft(xt)), achieves RT = O(
√
T ) for

Lipschitz continuous ft [4].
The O(

√
T ) bound cannot be improved in general [1].

However, this lower bound can be circumvented when the loss functions are curved! [1]

Definition (strongly convex and exp-concave functions)

A function f : K → (−∞,∞] is α-strongly convex (w.r.t. a norm ∥·∥) if for all x , y ∈ K ,

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ α

2
∥x − y∥2 .

A function f : K → (−∞,∞] is β-exp-concave if exp(−βf (x)) is concave.

• OGD with ηt = Θ(1/t) → RT = O( 1α lnT ) for α-strongly convex losses
• Online Newton Step (ONS) → RT = O(dβ lnT ) regret β-exp-concave losses

Q. Any other conditions under which we can circumvent the Ω(
√
T ) lower bound?
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Exploiting the Curvature of Feasible Sets

Definition (strongly convex sets)

A convex body K is λ-strongly convex w.r.t. a norm ∥·∥ if

∀x , y ∈ K ,∀θ ∈ [0, 1] θx + (1− θ)y + θ(1− θ)
λ

2
∥x − y∥2 · B∥·∥ ⊆ K .

x
K

B
(
θx + (1− θ)y , θ(1− θ) λ

2 ∥x − y∥2
)

y

Examples:

• ℓp-balls for p ∈ (1, 2]

• Level set {x : f (x) ≤ r}
for a strongly convex
and smooth function f : Rd → R



5 / 15
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Definition (strongly convex sets)

A convex body K is λ-strongly convex w.r.t. a norm ∥·∥ if

∀x , y ∈ K ,∀θ ∈ [0, 1] θx + (1− θ)y + θ(1− θ)
λ

2
∥x − y∥2 · B∥·∥ ⊆ K .

Theorem (Huang–Lattimore–György–Szepesvári, 2017 [2])

In online linear optimization over λ-strongly convex sets, Follow-the-Leader (FTL),
xt ∈ argminx∈K

∑t−1
s=1⟨gs , x⟩, achieves (for G -Lipschitz losses)

RT = O

(
G 2

λL
lnT

)
if there exists L > 0 such that ∥g1 + · · ·+ gt∥⋆ ≥ tL for all t ∈ [T ] (growth condition).

This upper bound matches their lower bound.
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Limitations of the Existing Approach

Limitations:

1. Only applicable to online linear optimization
→ Cannot leverage the curvature of loss functions

2. Can suffer a large regret when some ideal conditions (e.g., the growth condition) are
not satisfied

3. Curvature over the entire boundary of the feasible set is required

Research Questions

1. Can we resolve these three limitations?

2. Are there any other characterizations of feasible sets for which we can achieve fast
rates?
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Sphere-enclosed Sets: A New Characterization of Feasible Sets

Definition (sphere-enclosed sets)

Let K ⊂ Rd be a convex body, u ∈ bd(K ), and f : K → R. Then, convex body K is
(ρ, u, f )-sphere-enclosed if there exists a ball B(c , ρ) with c ∈ Rd and ρ > 0 satisfying

1. u ∈ bd(B(c , ρ))
2. K ⊆ B(c , ρ)
3. there exists k > 0 such that u + k∇f (u) = c

x
K

∇f (x)

K

z

∇f (y)
∇f (z)

y

Figure: Examples of sphere-enclosed sets.
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Main Result (1): Fast Rate over Sphere-enclosed Sets

Stochastic Environment: f1, f2, · · · ∼ D, f ◦ = Ef∼D[f ], and x⋆ = argminx∈K f ◦(x)
Adversarial Environment: f1, f2, . . . are fully adversarial
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Theorem

Consider online convex optimization. Suppose that K is (ρ, x⋆, f
◦)-sphere-enclosed and

that ∇f ◦(x⋆) ̸= 0. Then, there exists an algorithm (MetaGrad or universal online
learning algorithm by van Erven–Koolen–van der Hoeven (2016, 2021)) such that

RT = O

(
G 2ρ

∥∇f ◦(x⋆)∥2
lnT

)
in stochastic environments

and RT = O(GD
√
T ) in adversarial environments. (D: diam of K , G : Lipschitzness of ft)
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1

2γ⋆
∇f ◦(x⋆)
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γ⋆
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Theorem

Consider online convex optimization. Suppose that K is (ρ, x⋆, f
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Matches the lower bound in Huang–Lattimore–György–Szepesvári (2017) [2]
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Proof Overview (focusing only on T )

In stochastic environments, the regret is bounded from below by

RT = E

[
T∑
t=1

(f ◦(xt)− f ◦(x⋆))

]
≥ E

[
T∑
t=1

⟨∇f ◦(x⋆), xt − x⋆⟩

]
(convexity of f ◦)

≥E

[
T∑
t=1

γ⋆∥xt − x⋆∥22

]
for some γ⋆ > 0 (sphere-enclosedness of K )

There exists an algorithm achieving

RT ≲ E
[√∑T

t=1∥xt − x⋆∥22 lnT

]
.

Combining upper and lower bounds of regret and Jensen’s inequality gives

RT ≲

√√√√E

[
T∑
t=1

∥xt − x⋆∥22

]
lnT − γ⋆E

[
T∑
t=1

∥xt − x⋆∥22

]
≲

ax−bx2≤a2/(4b)

lnT

γ⋆
.
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Check ≥

x⋆

∇f ◦(x⋆)

x⋆ +
1

2γ⋆
∇f ◦(x⋆)

BK
γ⋆

K

Consider a ball facing at x⋆:

BK
γ = B

(
x⋆ +

1
2γ∇f

◦(x⋆) ,
1
2γ ∥∇f

◦(x⋆)∥2
)
⊆ Rd

Observation
z ∈ BK

γ is equivalent to ⟨∇f ◦(x⋆), z − x⋆⟩ ≥ γ∥z − x⋆∥22.
Hence, from the (ρ, x⋆, f

◦)-sphere-enclosedness of K ,
there exists γ so that K ⊆ BK

γ , and thus

⟨∇f ◦(x⋆), xt − x⋆⟩ ≥ γ∥xt − x⋆∥22 .

What is γ⋆?
One can set γ⋆ to γ⋆ = sup{γ ≥ 0: K ⊆ BK

γ }.
Since K is (ρ, x⋆, f

◦)-sphere-enclosing, γ⋆ satisfies γ⋆ <∞ and 1
2γ⋆
∥∇f ◦(x⋆)∥ = ρ.
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Benefits of Our Bound

Advantages against existing bounds:

1. Can achieve the O(lnT ) regret if the boundary of K is curved around the optimal
decision x⋆ or x⋆ in on corners

2. Can handle convex loss functions and thus the curvature of loss functions (e.g., strong
convexity or exp-concavity) can be simultaneously exploited

3. Can achieve O(
√
T ) regret even in the worst-case scenarios

Limitations:

1. Achieve fast rates only in stochastic environments
→ Our regret bounds can be extended to corrupted stochastic environments!
(omitted)

Q. Any other condition for which we can achieve fast rates?
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Extending the Bound to Uniformly Convex Sets

Definition (uniformly convex sets)

A convex body K is (κ, q)-uniformly convex w.r.t. a norm ∥·∥ (or q-uniformly convex) if

∀x , y ∈ K ,∀θ ∈ [0, 1] θx + (1− θ)y + θ(1− θ)
κ

2
∥x − y∥q · B∥·∥ ⊆ K .

Examples:

• ℓp-balls for p ∈ (1,∞)

• (κ, 2)-uniformly convex set is κ-strongly convex
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Definition (uniformly convex sets)

A convex body K is (κ, q)-uniformly convex w.r.t. a norm ∥·∥ (or q-uniformly convex) if

∀x , y ∈ K ,∀θ ∈ [0, 1] θx + (1− θ)y + θ(1− θ)
κ

2
∥x − y∥q · B∥·∥ ⊆ K .

Theorem (Kerdreux–d’Aspremont–Pokutta, 2021 [3])

In online linear optimization over (κ, q)-uniformly convex sets, Follow-the-Leader (FTL),
xt+1 ∈ argminx∈K

∑t−1
s=1⟨gs , x⟩, achieves

RT = O

(
G

q
q−1

(κL)
1

q−1

T
q−2
q−1

)

if there exists L > 0 such that ∥g1 + · · ·+ gt∥⋆ ≥ tL for all t ∈ [T ] (growth condition).
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RT = O
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q−1
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)

if there exists L > 0 such that ∥g1 + · · ·+ gt∥⋆ ≥ tL for all t ∈ [T ] (growth condition).

The bound O
(
T

q−2
q−1
)
becomes smaller than O(

√
T ) only when q ∈ (2, 3).
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Main Result (2): Faster Rates over Uniformly Convex Sets

Theorem

Consider online convex optimization. Suppose that K is (κ, q)-uniformly convex and that
∇f ◦(x⋆) ̸= 0. Then, there exists an algorithm such that

RT = O

(
G

q
q−1

(κ∥∇f ◦(x⋆)∥⋆)
1

q−1

T
q−2

2(q−1) (lnT )
q

2(q−1)

)
in stochastic environments

and RT = O(GD
√
T ) in adversarial environments. (D: diam of K , G : Lipschitzness of ft)

• Becomes O(lnT ) when q = 2 and Õ(
√
T ) when q →∞, thus interpolating between

the bound over the strongly convex sets and non-curved feasible sets

• Strictly better than the O
(
T

q−2
q−1

)
bound in Kerdreux–d’Aspremont–Pokutta (2021) [3]
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Summary

• Considered online convex optimization and introduced a new approach to achieve fast
rates by exploiting the curvature of feasible sets
• Proved an RT = O(ρ lnT ) regret bound for (ρ, x⋆, f

◦)-sphere enclosed feasible sets

1. Can exploit the curvature of loss functions
2. Can achieve the O(lnT ) regret bound only with local curvature properties
3. Can work robustly even in environments where loss vectors do not satisfy the ideal

conditions

• Proved the fast rates for uniformly convex feasible sets, which interpolates the O(lnT )
regret over strongly convex sets and the O(

√
T ) regret over non-curved sets
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