

# Zhimeng Jiang<sup>1</sup>, Zirui Liu<sup>2</sup>, Xiaotian Han<sup>\*3</sup>, Qizhang Feng<sup>1</sup>, Hongye Jin<sup>1</sup>, Qiaoyu Tan<sup>4</sup>, Kaixiong Zhou<sup>5</sup>, Na Zou<sup>6</sup>, Xia Hu<sup>7</sup>

## **Research** Motivation

- Deep neural networks, including GNNs, can suffer significant performance degradation due to prediction errors when real-world data changes, resulting in critical misclassifications.
- Current model editing techniques focus primarily on computer vision and NLP, with limited exploration of editable training for GNNs.
- Key question: Can we develop an effective method to edit GNNs that ensures corrections for erroneous predictions while maintaining model stability across unaffected nodes? If so, how?

# Why Gradient Rewiring?

Preliminary experiments show that direct fine-tuning of GNNs for model editing can lead to a significant increase in training loss, indicating performance degradation.

- **Statement:** There is a considerable gradient discrepancy between the target and training data, causing higher degradation for GNNs compared to MLPs.
- **Insight:** A method is needed to maintain training performance during model editing, motivating the development of a gradient rewiring approach.

# Gradient Rewiring Method

• **Problem Formulation:** Model editing aims to fix prediction errors at the target node while to model editing (see Eq. (2)); and (2) the differences in model predictions after editing should remain within a predefined range (see Eq. (3)).

$$\min_{\theta} \mathcal{L}_{tg}(f_{\theta}(\mathbf{x}_{tg}), y_{tg})$$
  
s.t.  $\mathcal{L}_{train}(f_{\theta'}, \mathcal{V}_{train})$   
 $\|\frac{1}{|\mathcal{V}_{train}|} \sum_{i \in \mathcal{V}_{train}} f_{\theta}$ 

• **Problem Solver:** (1) Approximation: Use Taylor expansion to estimate the influence of the model's parameters for both the target prediction and the training performance. (2)adjustment problem more efficiently by converting it into a simpler form in the dual space.

### Algorithm 1 Gradient Rewiring Editable (GRE) Graph Neural Networks Training 1: Input: Target samples $(\mathbf{x}_{tg}, \mathbf{y}_{tg})$ , hyperparameter $\lambda$ , well-trained GNN model $f_{\theta}(\cdot)$ , and its corresponding gradient for the training subgraph.

- 2: **Output:** Updated GNN model  $f_{\theta'}(\cdot)$ .
- 3: while  $f_{\theta}(\mathbf{x}_{tg}) \neq \mathbf{y}_{tg}$  do
- Compute the model gradient  $g_{tg}$  for the target loss  $\mathcal{L}_{tg}$ .
- with  $(1 + \lambda)^{-1}$ :
- $g^* = (1 + \lambda)^{-1} (g_{tg} v^* g_{train}).$
- Replace  $g_{tg}$  with  $g^*$  and update the model parameters using the optimizer to obtain  $\theta'$ . 8: end while

# Gradient Rewiring for Editable Graph Neural Network Training

<sup>1</sup>Texas A&M University, <sup>2</sup>University of Minnesota, <sup>3</sup>Case Western Reserve University, <sup>4</sup>NYU Shanghai, <sup>5</sup>North Carolina State University, <sup>6</sup>University of Houston, <sup>7</sup>Rice University

preserving performance on training nodes: (1) the training loss should not exceed its value prior

|                                                                               | (1) |
|-------------------------------------------------------------------------------|-----|
| $\leq \mathcal{L}_{train}(f_{	heta_0},\mathcal{V}_{train})$                   | (2) |
| $\  f_{	heta_0}(\mathbf{x}_i) - f_{	heta_0}(\mathbf{x}_i) \ ^2 \leq \delta',$ | (3) |

Transforming into Gradient Optimization (3) Solution via Dual Optimization: Solve the gradient

Rewire the target loss gradient  $g_{tg}$  by reducing the projection component on  $g_{train}$ , then scale

## **Experiment Results**

• Experimental Results in the Independent Editing Setting (a) Our proposed GRE and GRE+ notably surpass both GD and ENN in terms of test drawdown; (b) Our proposed GRE and GRE+ are compatible with EGNN and further improve the performance.

|                | Fditor | Cora               |                   |                       | A-computers         |                    |      | A-photo                      |                    |      | Coauthor-CS        |                     |              |
|----------------|--------|--------------------|-------------------|-----------------------|---------------------|--------------------|------|------------------------------|--------------------|------|--------------------|---------------------|--------------|
|                | Editor | Acc↑               | DD↓               | $\mathrm{SR}\uparrow$ | Acc↑                | DD↓                | SR↑  | Acc↑                         | DD↓                | SR↑  | Acc↑               | DD↓                 | $SR\uparrow$ |
| MLP            | GD     | $68.15 \pm 0.33$   | $3.85 \pm 0.33$   | 0.98                  | <b>73.22</b> ±0.48  | <b>6.78</b> ±0.48  | 1.00 | <b>83.19</b> ±0.91           | <b>6.81</b> ±0.91  | 1.00 | $93.59 \pm 0.05$   | $0.41 \pm 0.05$     | 1.00         |
|                | ENN    | $37.16 \pm 3.80$   | $52.24 \pm 4.76$  | 1.00                  | $15.51 \pm 10.99$   | $72.36 \pm 10.87$  | 1.00 | $16.71 \pm 14.81$            | $77.07 \pm 15.20$  | 1.00 | $4.94 \pm 3.78$    | $89.43 \pm 3.34$    | 1.00         |
|                | GRE    | $69.41 \pm 0.44$   | $2.59 \pm 0.44$   | 0.96                  | $61.21 \pm 1.26$    | $18.79 \pm 1.26$   | 1.00 | $73.56 \pm 1.41$             | $16.44 \pm 1.41$   | 1.00 | $93.27 \pm 0.09$   | $0.73 {\pm} 0.09$   | 1.00         |
|                | GRE+   | $71.19 \pm 0.28$   | $0.61 \pm 0.28$   | 0.96                  | $61.27 \pm 1.15$    | $18.73 \pm 1.15$   | 1.00 | $\underline{78.26} \pm 1.15$ | $11.74 \pm 1.15$   | 1.00 | <b>93.73</b> ±0.07 | $0.27 \pm 0.07$     | 1.00         |
| GCN            | GD     | $84.37 \pm 5.84$   | $5.03 \pm 6.40$   | 1.00                  | $44.78 \pm 22.41$   | $43.09 \pm 22.32$  | 1.00 | $28.70 \pm 21.26$            | $65.08 \pm 20.13$  | 1.00 | $91.07 \pm 3.23$   | $3.30 \pm 2.22$     | 1.00         |
|                | ENN    | $37.16 \pm 3.80$   | $52.24 \pm 4.76$  | 1.00                  | $15.51 \pm 10.99$   | $72.36 \pm 10.87$  | 1.00 | $16.71 \pm 14.81$            | $77.07 \pm 15.20$  | 1.00 | $4.94 \pm 3.78$    | $89.43 \pm 3.34$    | 1.00         |
|                | GRE    | $84.98 \pm 0.47$   | $4.02 \pm 0.47$   | 0.96                  | $46.28 \pm 3.47$    | $51.72 \pm 3.47$   | 0.98 | $35.88 \pm 2.26$             | $58.12 \pm 2.26$   | 0.99 | $89.46 \pm 0.29$   | $4.54 {\pm} 0.29$   | 1.00         |
|                | GRE+   | <b>88.84</b> ±0.35 | <b>0.56</b> ±0.35 | 0.98                  | $47.75 \pm 0.45$    | <b>40.25</b> ±0.45 | 1.00 | <b>50.13</b> ±1.36           | <b>43.87</b> ±1.36 | 1.00 | <b>91.99</b> ±0.30 | $2.01 \pm 0.30$     | 1.00         |
| Graph-<br>SAGE | GD     | $82.06 \pm 4.33$   | $4.54 \pm 5.32$   | 1.00                  | $21.68 \pm 20.98$   | $61.15 \pm 20.33$  | 1.00 | $38.98 \pm 30.24$            | $55.32 \pm 29.35$  | 1.00 | $90.15 \pm 5.58$   | $5.01 \pm 5.32$     | 1.00         |
|                | ENN    | $33.16 \pm 1.45$   | $53.44 \pm 2.23$  | 1.00                  | $16.89 {\pm} 16.98$ | $65.94{\pm}16.75$  | 1.00 | $15.06 \pm 11.92$            | $79.24 \pm 11.25$  | 1.00 | $13.71 \pm 2.73$   | $81.45 \pm 2.11$    | 1.00         |
|                | GRE    | $83.64 \pm 0.20$   | $3.36 \pm 0.20$   | 1.00                  | $20.11 \pm 2.30$    | $62.89 \pm 2.30$   | 0.96 | $41.96 \pm 1.57$             | $52.04 \pm 1.57$   | 0.98 | $91.07 \pm 0.44$   | $3.93 \pm 0.44$     | 1.00         |
|                | GRE+   | <b>86.59</b> ±0.07 | $0.41 \pm 0.07$   | 1.00                  | <b>22.23</b> ±1.60  | <b>60.77</b> ±1.60 | 0.97 | $44.05 \pm 0.83$             | <b>50.32</b> ±0.83 | 1.00 | <b>91.75</b> ±0.43 | <b>3.25</b> ±0.43   | 1.00         |
|                | GD     | $87.58 \pm 0.31$   | $1.42 \pm 0.31$   | 1.00                  | $87.27 \pm 0.14$    | $0.73 \pm 0.14$    | 0.78 | $93.24 \pm 0.59$             | $0.76 \pm 0.59$    | 0.77 | $93.99 \pm 0.02$   | $0.01 \pm 0.02$     | 0.91         |
| EGNN-          | GRE    | $87.47 \pm 0.41$   | $1.53 \pm 0.41$   | 1.00                  | $83.38 \pm 1.20$    | $4.62 \pm 1.20$    | 0.87 | $88.01 \pm 1.20$             | $5.99 \pm 1.20$    | 0.86 | $93.92 {\pm} 0.07$ | $0.08 {\pm} 0.07$   | 0.94         |
| GCN            | GRE+   | <b>88.99</b> ±0.21 | $0.05 \pm 0.21$   | 1.00                  | <b>88.10</b> ±1.21  | <b>0.51</b> ±1.21  | 1.00 | $94.22 \pm 0.98$             | $-0.21 \pm 0.98$   | 1.00 | <b>94.32</b> ±0.06 | - <b>0.32</b> ±0.06 | 1.00         |
|                | GD     | $85.05 \pm 0.11$   | $0.95 \pm 0.11$   | 1.00                  | $85.93 \pm 0.08$    | $0.07 \pm 0.08$    | 0.90 | $93.87 \pm 0.20$             | $0.13 \pm 0.20$    | 0.81 | $95.0 \pm 0.01$    | $0.00 \pm 0.01$     | 0.99         |
| EGNN-          | GRE    | $84.79 \pm 0.19$   | $1.21 \pm 0.19$   | 1.00                  | $81.94{\pm}1.71$    | $4.06 \pm 1.71$    | 0.96 | $88.55 \pm 1.19$             | $5.45 \pm 1.19$    | 0.95 | $94.85 {\pm} 0.05$ | $0.15 {\pm} 0.05$   | 1.00         |
| SAGE           | GRE+   | <b>86.24</b> ±1.43 | -0.24±1.43        | 1.00                  | <b>85.97</b> ±0.83  | -0.16±0.83         | 1.00 | <b>94.07</b> ±0.03           | -0.07±0.03         | 0.98 | <b>95.07</b> ±0.03 | -0.07±0.03          | 1.00         |

• Experimental Results in the Sequential Editing Setting. (a) The proposed GRE and GRE+ consistently outperform GD in the sequential setting. (b) The improvement of GRE+ over GRE is quite limited in the sequential setting.



Figure: The test accuracy drawdown in sequential editing setting for GCN and GraphSAGE on various datasets. The units for y-axis are percentages (%).

Acknowledgement: The work is in part supported by NSF grants NSF IIS-2310260, IIS-2224843, IIS-2450662, IIS-2431515 and IIS-2239257.



