
Safety through feedback in Constrained RL

1

Shashank Reddy1, Pradeep Varakantham1, Praveen Paruchuri2

1Singapore Management University
2International Institute of Information Technology, Hyderabad



Safety in Reinforcement Learning 

● Safety is critical when deploying RL agents in real-world environments

● Agents must adhere to stringent safety constraints- such as speed limits, 

proximity to humans, operational boundaries, etc



Constrained Reinforcement Learning



Challenges:

● Cost function design

● Safety can depend on individual preferences

● Expensive to evaluate
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Solution: Learn the cost function from feedback!



Learning from Feedback
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• Collected from a human or an expensive to evaluate system

• Collected offline in between rounds

• Feedback must be minimized

• Feedback is binary (safe / unsafe) 

• Cost is inferred from feedback

Feedback Collection

(Naïve Solution)

• Elicit feedback for every state of every trajectory collected by the agent 

• Not feasible for Deep RL!

Efficient Feedback Collection (Proposed)

• Elicit Feedback for longer horizons (trajectory segments)

• Selectively sample trajectories that are shown to the evaluator (most 

informative)



Feedback over Longer Horizons
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• Break the trajectory into segments of length k

• Elicit feedback for each segment

• Segment is labeled safe if all states are safe, else it is marked unsafe

Inferring the Cost function

• Label all states in the safe segment 0

• Label all states in the unsafe segment 1

• Minimize the cross-entropy loss

• Why this works:

– True safe states receive both labels 0 and 1

– True unsafe states receive label 1 only

Assumption

• Each safe receives label 0 at 

least once

• Guaranteed only when 

segment length is 1

• In practice works for longer 

horizons as well



Efficient Subsampling of Trajectories
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Motivation: 

Sample the most informative trajectories to show to the evaluator

Idea: 

As the agent improves         explores new states         cost function prone to errors

Therefore, sample novel trajectories, defining a trajectory as novel if it includes at least e

unseen states

We call this method novelty sampling

Advantage: Automatically stops eliciting feedback once the trajectories are no longer novel



Our Approach: RL from Safety Feedback (RLSF)
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1. Collect Data from the 
Agent

3. Improve the Agent 
using the Feedback

2. Elicit Safety Feedback
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Experiments
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Safety Gymnasium [Ji J., et al. 2023] Driver [Lindner D, et al. 2022]



Quantitative Results
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Qualitative Results (Safe vs Unsafe Agents)
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Ablation on sampling methods
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Novelty reduces 

over time



Future Work
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• Some of the more complex environments (Goal, Push, Driver) require state 

level feedback; rest use trajectory level feedback

• Synthetic feedback was used in the experiments, real world feedback is more 

noisy        human subject experiments



Thanks
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Image Credits: AI-generated images (DALL-E 3) were used to illustrate key points. The images in Slide 8 (Overall Architecture) are sourced from [Ji J. 

et al., 2023], licensed under the Apache License 2.0.
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