

School of Computing and Information Systems

Safety through feedback in Constrained RL

Shashank Reddy¹, Pradeep Varakantham¹, Praveen Paruchuri² ¹Singapore Management University ²International Institute of Information Technology, Hyderabad

Safety in Reinforcement Learning

- Safety is critical when deploying RL agents in real-world environments
- Agents must adhere to stringent safety constraints- such as speed limits, proximity to humans, operational boundaries, etc

Constrained Markov Decision Process A Constrained MDP [4] introduces a function $c(s, a) \in \mathbb{R}$ and a cost threshold $c_{max} \in \mathbb{R}$ that defines the maximum cost that can be accrued by a policy. The set of feasible policies is defined as $\Pi_c = \{\pi \in \Pi : \mathcal{J}^c(\pi) \leq c_{max}\}$. A policy is considered to be *safe* w.r.t *c* if it belongs to Π_c .

In this paper, we consider the constrained RL problem defined as,

 $\pi^* = \operatorname*{argmin}_{\pi \in \Pi_c} \, \mathcal{J}^r(\pi)$

We incorporate an additional constraint enforcing the cost function to be binary, i.e, $c(s, a) \in \{0, 1\}$. This ensures that each state-action pair is inherently categorized as either *safe* or *unsafe*. We opt for this approach because it is simpler for human evaluators to assign a binary safety value to state-actions when assessing policy safety, as emphasized in [31].

Solution: Learn the cost function from feedback!

Challenges:

- Cost function design
- Safety can depend on individual preferences
- Expensive to evaluate

Learning from Feedback

- Collected from a human or an expensive to evaluate system
- Collected offline in between rounds
- Feedback must be **minimized**
- Feedback is **binary** (safe / unsafe)
- Cost is inferred from feedback

Feedback Collection

(Naïve Solution)

- Elicit feedback for every state of every trajectory collected by the agent
- Not feasible for Deep RL!

Efficient Feedback Collection (Proposed)

- Elicit Feedback for longer horizons (trajectory segments)
- Selectively sample trajectories that are shown to the evaluator (most informative)

Feedback over Longer Horizons

- Break the trajectory into segments of length k
- Elicit feedback for each segment
- Segment is labeled safe if all states are safe, else it is marked unsafe

Inferring the Cost function

- Label all states in the safe segment 0
- Label all states in the unsafe segment 1
- Minimize the *cross-entropy loss*
- Why this works:
 - True safe states receive both labels 0 and 1
 - True unsafe states receive label 1 only

Assumption

- Each safe receives label 0 at least once
- Guaranteed only when segment length is 1
- In practice works for longer horizons as well

Efficient Subsampling of Trajectories

Motivation:

Sample the most informative trajectories to show to the evaluator

Idea:

As the agent improves \Longrightarrow explores new states \Longrightarrow cost function prone to <u>errors</u>

Therefore, sample <u>novel</u> trajectories, defining a trajectory as novel if it includes at least **e** <u>unseen</u> states

We call this method *novelty* sampling

Advantage: Automatically stops eliciting feedback once the trajectories are no longer novel

Experiments

Safety Gymnasium [Ji J., et al. 2023]

Driver [Lindner D, et al. 2022]

Table 1: Performance of different algorithms on the Safety Benchmarks. The first 7 environments represent the *hard* constraint case. The remaining environments illustrate the *soft* constraint case, with values in brackets indicating the cost threshold. Each algorithm is run for 6 independent seeds. (orange) and (blue) indicate the best performance in the known costs and inferred costs settings, respectively. Algorithms with a cost violation (C.V) rate below 1% are deemed to have equal performance in terms of safety.

Environment		Cost Known (Best Run)		Cost Inferred (Mean \pm Standard error)		
Lawnonnen		PPOLag	SIMKC	SDM	SIM	RLSF (Ours)
Point Circle	Return C.V Rate (%)	45.26 0.4	46.09 0.43	36.20 ± 3.95 11.43 ± 0.69	$\begin{array}{c} 22.26 \pm 9.59 \\ 35.21 \pm 10.09 \end{array}$	$\begin{array}{c} \textbf{36.42} \pm \textbf{1.78} \\ \textbf{1.9} \pm \textbf{0.09} \end{array}$
Car Circle	Return C.V Rate (%)	14.34 0.84	15.21 5.4	5.18 ± 2.48 6.2 ± 6.18	$\begin{array}{c} 6.34 \pm 2.87 \\ 4.53 \pm 4.00 \end{array}$	$\begin{array}{c} 9.37 \pm 0.97 \\ 0.54 \pm 0.30 \end{array}$
Biased Pendulum	Return C.V Rate (%)	717.43 0.0	983.27 0.1	$\begin{array}{c} 495.58 \pm 160.84 \\ 39.91 \pm 17.05 \end{array}$	$\begin{array}{c} 577.15 \pm 184.31 \\ 48.58 \pm 21.67 \end{array}$	$\begin{array}{c} \textbf{721.48} \pm \textbf{111.49} \\ \textbf{0} \pm \textbf{0} \end{array}$
Blocked Swimmer	Return C.V Rate (%)	22.62 3.91	21.05 0.01	$\begin{array}{c} 86.96 \pm 10.69 \\ 92.8 \pm 1.65 \end{array}$	$\begin{array}{c} 2.15 \pm 8.58 \\ 13.33 \pm 12.11 \end{array}$	$\begin{array}{c} 16.09\pm1.44\\ 0.01\pm0.01 \end{array}$
HalfCheetah	Return C.V Rate (%)	$2786.71 \\ 0.42$	2497.82 0.06	$\begin{array}{c} 3031.7 \pm 336.48 \\ 59.4 \pm 8.28 \end{array}$	$\begin{array}{c} 257.34 \pm 147.35 \\ 0.0 \pm 0.0 \end{array}$	$\begin{array}{c} \textbf{2112.63} \pm \textbf{161.20} \\ \textbf{0.06} \pm \textbf{0.01} \end{array}$
Hopper	Return C.V Rate (%)	$1705.00 \\ 0.19$	1555.25 0.02	$\begin{array}{c} 1097.57 \pm 56.35 \\ 0.0 \pm 0.0 \end{array}$	$\begin{array}{c} 990.08 \pm 8.66 \\ 0.0 \pm 0.0 \end{array}$	$\begin{array}{c} 1408.71 \pm 27.3 \\ 0.29 \pm 0.02 \end{array}$
Walker2d	Return C.V Rate (%)	$2947.25 \\ 0.16$	2925.23 0.0	$\begin{array}{c} 2195.94 \pm 134.21 \\ 1.58 \pm 1.53 \end{array}$	$\begin{array}{c} 993.38 \pm 17.69 \\ 0.0 \pm 0.0 \end{array}$	$\begin{array}{c} 2783.29 \pm 57.51 \\ 0.05 \pm 0.01 \end{array}$
Point Goal	Return Cost (40.0)	26.16 34.19	26.1 31.83	$\begin{array}{c} 1.61 \pm 1.8149 \\ 30.57 \pm 13.29 \end{array}$	$\begin{array}{c} 10.86 \pm 4.1 \\ 52.76 \pm 12.85 \end{array}$	$\begin{array}{c} 24.65 \pm 0.59 \\ 35.08 \pm 1.08 \end{array}$
Car Goal	Return Cost (40.0)	$27.37 \\ 41.67$	26.44 35.41	$\begin{array}{c} 1.05 \pm 2.83 \\ 34.71 \pm 9.87 \end{array}$	$\begin{array}{c} 10.88 \pm 7.1 \\ 33.33 \pm 11.26 \end{array}$	$\begin{array}{c} 24.28 \pm 2.1 \\ 41.25 \pm 2.27 \end{array}$
Point Push	Return Cost (35.0)	6.00 26.08	10.84 26.96	$\begin{array}{c} 0.16 \pm 0.14 \\ 22.89 \pm 5.95 \end{array}$	$3.63 \pm 1.77 \\ 45.43 \pm 3.86$	$\begin{array}{c} \textbf{2.68} \pm \textbf{1.03} \\ \textbf{30.51} \pm \textbf{3.4} \end{array}$
Car Push	Return Cost (35.0)	3.07 20.53	2.68 20.95	-3.04 ± 3.3 23.25 ± 7.78	$\begin{array}{c} 1.56 \pm 0.46 \\ 36.55 \pm 1.48 \end{array}$	$\begin{array}{c} \textbf{1.54} \pm \textbf{0.51} \\ \textbf{27.69} \pm \textbf{1.19} \end{array}$

Qualitative Results (Safe vs Unsafe Agents)

PPO | Reward: -0.00 | Cost: 0.00

RLSF | Reward: -0.00 | Cost: 0.00

Ablation on sampling methods

- Some of the more complex environments (*Goal, Push, Driver*) require *state level* feedback; rest use *trajectory level* feedback
- Synthetic feedback was used in the experiments, real world feedback is more noisy in human subject experiments

14

Thanks

Image Credits: AI-generated images (DALL-E 3) were used to illustrate key points. The images in Slide 8 (Overall Architecture) are sourced from [Ji J. et al., 2023], licensed under the Apache License 2.0.