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Motivation

✓ Improving discriminative in survival models often compromises calibration.

✓ A new approach is need to enhance discrimination without sacrificing calibration, 

using the embedding space through contrastive learning.

Challenges

✓ Combining NLL with ranking loss improves discrimination but misaligns model outputs 

with the actual risk distribution, negatively affecting calibration and clinical applicability. 

✓ Propose a novel contrastive learning approach for deep survival model

✓ Deviate from directly ranking the model outcome in the form of risk/survival functions

✓ Goal : Aligns with our inductive bias that patients with similar survival outcomes should share similar 

clinical status, which manifests through similar representations

Experiments

✓ The encoder, fθ : 𝒳 → ℋ, takes 

features x ∈ 𝒳 as input and outputs latent 

representation, i.e., h = fθ(x).

✓ The projection head, fψ :ℋ → ℝd, maps

latent representation h to the embedding

space where contrastive learning is

applied, i.e., 

z = fθ(h).

Preliminaries

Discrete-Time Survival Analysis

✓ Survival function 𝑆 represents the probability that the event occurs after time 𝑡 for a 

patient with features 𝐱.
✓ Hazard function 𝜆 is the instantaneous risk of the event at time 𝑡 given feature 𝐱

where Ƹ𝑝 represents the estimate for the probability of an event occurring at time 𝑡

Ranking Loss for Survival Analysis

Aim to maximize a relaxed proxy of the concordance index.

Calibration Plot

Subgroup Analysis
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Network Description
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Effect of Contrastive Learning

Noise Contrastive Estimation (NCE)

To learn mapping 𝑓 = 𝑔𝜓 ∘ 𝑓𝜃 utilizing a positive sample 𝐱+ ∼ 𝑝𝑋+  ,and negative 

samples 𝐱− ∼ 𝑞

Weighted Distribution 𝒒 for Time-to-Event Differences

To reflect the difference in the time-to-events in the embedding space, we design a 

novel distribution 𝑞 by utilizing the available information from survival outcomes.

✓ Hence, given an anchor 𝐱, 𝜏 and a negative 𝐱−; 𝜏− , we define the weight function, 

𝜎 > 0 is a temperature coefficient.

✓ This function assigns larger weights to samples with large differences in time-to-

event outcomes, and smaller weights to samples with small differences.

✓ Designing 𝑞 based on the following inductive bias similar patients are more likely to 

experience the event at similar time points than the ones who are not. 
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Method
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Quantitative Analysis

✓ The hazard network, 𝑓𝜙:ℋ × 𝒯 → [0,1], predicts the hazard rate at each 

time point 𝑡 ∈ 𝒯 given input latent representation 𝐡, i.e., መ𝜆 𝑡 𝐱 = 𝑓𝜙 𝑓𝜃(𝐱), 𝑡 .

✓ Significantly improves the alignment of representations with event time information.

✓ Compares survival plots of the models with the Kaplan-Meier curve to confirm calibration.

✓ Consurv outperforms all benchmarks in discrimination and maintains comparable 

calibration.
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