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Motivation & Challenges Method

Experiments

I\/Iotlvatlo.n S | | o (v Propose a novel contrastive learning approach for deep survival model \| Effect of Contrastive Learning
v' Improving discriminative in survival models often compromises calibration. | v Deviate from directly ranking the model outcome in the form of risk/survival functions i - i
v" A new approach is need to enhance discrimination without sacrificing calibration, ' v Goal : Aligns with our inductive bias that patients with similar survival outcomes should share similar l ' Faso
using the embedding space through contrastive learning. . Clinical status, which manifests through similar representations _J g =
= ®

Challenges
v" Combining NLL with ranking loss improves discrimination but misaligns model outputs
with the actual risk distribution, negatively affecting calibration and clinical applicability.

Preliminaries

Discrete-Time Survival Analysis
v" Survival function S represents the probability that the event occurs after time ¢ for a

patient with features x.
v Hazard function 2 is the instantaneous risk of the event at time t given feature x

S(t]x) = P(T > t|x) = 1_[(1 _ At 1%))
N t'st
Ly = —2[51' log p(z;Ix;) + (1 — &) log S(;1x,)]
i=1
where p represents the estimate for the probability of an event occurring at time ¢t

Ranking Loss for Survival Analysis
Aim to maximize a relaxed proxy of the concordance index.

Lrank = z Aij-m (ﬁ(Tilxi)»ﬁ(Tilxj))
I#]
Network Description
v The encoder, fg: X —» H, takes
features x € X as input and outputs latent
representation, i.e., h = fg(x).

0,0,0 uncensoned
i censored

v The projection head, fy,: H — RY, maps

latent representation h to the embedding

space where contrastive learning is
applied, i.e.,
z = fg(h).

v' The hazard network, f4: H X T - [0,1], predicts the hazard rate at each
time point t € T given input latent representation h, i.e., A(t|x) = fo (fo (%), 1).

Noise Contrastive Estimation (NCE)

To learn mapping f = gy ° fy utilizing a positive sample x™ ~ py+ ,and negative
samplesx™ ~ q

es(x, x+)
—log

+ M- Ex-—q4 [eS(X» X_)]

Weighted Distribution q for Time-to-Event Differences

To reflect the difference in the time-to-events in the embedding space, we design a
novel distribution g by utilizing the available information from survival outcomes.

wir1t)=1—elt71/0

v' Hence, given an anchor (x,7) and a negative (x~;7~), we define the weight function,
o > 0 Is a temperature coefficient.

v This function assigns larger weights to samples with large differences in time-to-
event outcomes, and smaller weights to samples with small differences.

1
q(x7;X) = §W(X‘; X)p(X~)

v Designing g based on the following inductive bias similar patients are more likely to
experience the event at similar time points than the ones who are not.

Importance Sampling Using Survival Outcomes
E - KCI(x"; x)) | eS(x'x">]
"I\ p(x7)

-y [(552) )

Ex-qle™ )] =

(a) NLL only 400 epochs

(b) SNCE only 400 epochs

(c) NLL + SNCE 400 epochs

Figure 2: t-SNE visualization for latent representations learned with Ly;; only, Lgycg only, and
ConSurv for the METABRIC dataset, colored by event times (for uncensored samples).

Calibration Plot
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Figure 3: Calibration plots for ConSurv in comparison with benchmarks for the METABRIC dataset.

Subgroup Analysis

Subgroup: ER+

Subgroup: ER-

survival Probability
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Figure 4: Comparison of the survival curves across various
patient subgroups for the METABRIC dataset.

Quantitative Analysis

METABRIC

METHOD Clt IBS | DDC | D-CAL
CoxPH 0.645;{;0_019 0-175:&0.028 0.111i0,024 25
DEEPSURV 0.625+0.025 0.183+0.020 0.103+0.026 25
DEEPHIT 0.60410_019 0-204i0.018 0-292:|:0.017 0
DRSA 0.60410.032 0.249410038 0.17810.060 0
DCS 0.61240.020 0.2064+0.043 0.0541¢.030 2
X-CAL 0.632i0‘027 0.182520,023 0.065i0,037 2
Ler 0.642+0.022 0.197+0.030 0.077+0.020 13
Lwir & Lyce | 0.659+0.020  0.19340.020  0.08010.022 21
Lair & Lranke | 0.65240.022  0.24740.030 0.177+0.020 0
CONSURV | 0.66510023 0.186+0.021 0.110+0.024
GBSG

METHOD CI 1 IBS | DDC|  D-CAL
CoxPH 0.662i0_179 0.181i0,007 0.18310,037 25
DEEPSURV 0.653+0.042 0.18240.000 0.153+0.066 24
DEEPHIT 0.633+0.032 0.205+0.006 0.34210.023 3
DRSA 0.66810.016 0.27810.018 0.40210.055 0
DCS 0.677 10017 0.18110.008 0.1241¢.025 10
X-CAL 0.6754+0.017 0.18140.010 0.166+0.020 8
L 0.668+0.010 0.179+0.006 0.15410.029 0
Lwir & Lnce | 0.669+0.020 0.17940.007  0.155+0.026 0
Lnr & Lrani | 0.687+0.010  0.280+0.007  0.263+0.025 0

CONSURYV

| 0.67710.020 0.17910.007

0.160-0.026

18

v" Significantly improves the alignment of representations with event time information.

v' Compares survival plots of the models with the Kaplan-Meier curve to confirm calibration.

v Consurv outperforms all benchmarks in discrimination and maintains comparable

calibration.
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