

Toward a Well-Calibrated Discrimination via Survival Outcome-Aware Contrastive Learning

Motivation & Challenges

Motivation

- ✓ Improving discriminative in survival models often compromises calibration.
- \checkmark A new approach is need to enhance discrimination without sacrificing calibration, using the embedding space through contrastive learning.

Challenges

✓ Combining NLL with ranking loss improves discrimination but misaligns model outputs with the actual risk distribution, negatively affecting calibration and clinical applicability.

Preliminaries –

Discrete-Time Survival Analysis

- \checkmark Survival function S represents the probability that the event occurs after time t for a patient with features x.
- \checkmark Hazard function λ is the instantaneous risk of the event at time t given feature x

$$S(t|\mathbf{x}) = \mathbb{P}(T > t|\mathbf{x}) = \prod_{t' \le t} (1 - \lambda(t'|\mathbf{x}))$$
$$\mathcal{L}_{NLL} = -\sum_{i=1}^{N} \left[\delta_i \log \hat{p}(\tau_i | \mathbf{x}_i) + (1 - \delta_i) \log \hat{S}(\tau_i | \mathbf{x}_i) \right]$$

where \hat{p} represents the estimate for the probability of an event occurring at time t **Ranking Loss for Survival Analysis**

Aim to maximize a relaxed proxy of the concordance index.

$$\mathcal{L}_{Rank} = \sum_{i \neq j} A_{i,j} \cdot \eta \left(\hat{R}(\tau_i | \mathbf{x}_i), \hat{R}(\tau_i | \mathbf{x}_j) \right)$$

Network Description

- ✓ The encoder, f_{θ} : $X \to H$, takes features $x \in \mathcal{X}$ as input and outputs latent representation, i.e., $h = f_{\theta}(x)$.
- ✓ The projection head, f_{ψ} : $\mathcal{H} \to \mathbb{R}^d$, maps latent representation h to the embedding space where contrastive learning is applied, i.e.,

$$z = f_{\theta}(h).$$

✓ The hazard network, f_{ϕ} : $\mathcal{H} \times \mathcal{T} \rightarrow [0,1]$, predicts the hazard rate at each time point $t \in \mathcal{T}$ given input latent representation **h**, i.e., $\hat{\lambda}(t|\mathbf{x}) = f_{\phi}(f_{\theta}(\mathbf{x}), t)$. Dongjoon Lee^{1*}, Hyeryn Park^{1*}, Changhee Lee²

¹ Chung-Ang University ² Korea University

- ✓ Propose a novel contrastive learning approach for deep survival model
- Deviate from directly ranking the model outcome in the form of risk/survival functions
- Goal : Aligns with our inductive bias that patients with similar survival outcomes should share similar clinical status, which manifests through similar representations

Noise Contrastive Estimation (NCE)

To learn mapping $f = g_{\psi} \circ f_{\theta}$ utilizing a positive sample $\mathbf{x}^+ \sim p_{\chi^+}$, and negative samples $\mathbf{x}^- \sim q$

$$\mathbb{E}_{\substack{\mathbf{x} \sim p_X \\ \mathbf{x}^+ \sim p_{X^+}}} \left[-\log \frac{e^{s(\mathbf{x}, \mathbf{x}^+)}}{M \cdot \mathbb{E}_{\mathbf{x}^- \sim q}[e^{s(\mathbf{x}, \mathbf{x}^-)}]} \right]$$

Weighted Distribution q for Time-to-Event Differences

To reflect the difference in the time-to-events in the embedding space, we design a novel distribution q by utilizing the available information from survival outcomes.

$$w(\tau^{-};\tau) = 1 - e^{|\tau - \tau^{-}|/\sigma}$$

- ✓ Hence, given an anchor (\mathbf{x}, τ) and a negative $(\mathbf{x}^-; \tau^-)$, we define the weight function, $\sigma > 0$ is a temperature coefficient.
- ✓ This function assigns larger weights to samples with large differences in time-toevent outcomes, and smaller weights to samples with small differences.

$$q(\mathbf{x}^{-};\mathbf{x}) = \frac{1}{Z}w(\mathbf{x}^{-};\mathbf{x})p(\mathbf{x}^{-})$$

 \checkmark Designing q based on the following inductive bias similar patients are more likely to experience the event at similar time points than the ones who are not.

Importance Sampling Using Survival Outcomes

$$E_{x^{-} \sim q} \left[e^{s(x,x^{-})} \right] = E_{x^{-} \sim p} \left[\left(\frac{q(x^{-};x)}{p(x^{-})} \right) \cdot e^{s(x,x^{-})} \right]$$
$$= E_{x^{-} \sim p} \left[\left(\frac{w(x^{-};x)}{z} \right) \cdot e^{s(x,x^{-})} \right]$$
$$\approx \frac{1}{z \cdot M} \sum_{j=1}^{M} w(x_{j}^{-};x) \cdot e^{s(x,x_{j}^{-})}$$

Experiments

patient subgroups for the METABRIC dataset.

- Significantly improves the alignment of representations with event time information.
- Compares survival plots of the models with the Kaplan-Meier curve to confirm calibration.
- Consurv outperforms all benchmarks in discrimination and maintains comparable calibration.

Quantitative Analysis

	METABRIC			
Method	CI ↑	$\mathbf{IBS}\downarrow$	$DDC\downarrow$	D-CAL
CoxPH	$0.645_{\pm 0.019}$	$0.175_{\pm 0.028}$	$0.111_{\pm 0.024}$	25
DEEPSURV	$0.625_{\pm 0.025}$	$0.183_{\pm 0.029}$	$0.103 _{\pm 0.026}$	25
DeepHit	$0.604_{\pm 0.019}$	$0.204_{\pm 0.018}$	$0.292 _{\pm 0.017}$	0
DRSA	$0.604_{\pm 0.032}$	$0.249_{\pm 0.038}$	$0.178_{\pm 0.060}$	0
DCS	$0.612_{\pm 0.029}$	$0.206 _{\pm 0.043}$	$0.054_{\pm 0.039}$	2
X-CAL	$0.632_{\pm 0.027}$	$0.182_{\pm 0.023}$	$0.065_{\pm 0.037}$	2
\mathcal{L}_{NLL}	$0.642_{\pm 0.022}$	$0.197_{\pm 0.030}$	$0.077_{\pm 0.020}$	13
$\mathcal{L}_{\textit{NLL}}$ & $\mathcal{L}_{\textit{NCE}}$	$0.659_{\pm 0.020}$	$0.193 _{\pm 0.029}$	$0.080_{\pm 0.022}$	21
\mathcal{L}_{NLL} & \mathcal{L}_{Rank}	$0.652_{\pm 0.022}$	$0.247_{\pm 0.030}$	$0.177_{\pm 0.020}$	0
CONSURV	$0.665_{\pm 0.023}$	$0.186 _{\pm 0.021}$	$0.110_{\pm 0.024}$	23
		GBS	G	
Метнор	CI ↑	GBS IBS↓	G DDC↓	D-CAL
Метнор CoxPH	$\begin{array}{ c c c } CI\uparrow \\ 0.662_{\pm 0.179} \end{array}$			D-CAL 25
METHOD CoxPH DeepSurv		$IBS\downarrow \\ 0.181_{\pm 0.007}$	$DDC \downarrow$ $0.183_{\pm 0.037}$	_
СохРН	$ \begin{vmatrix} 0.662_{\pm 0.179} \\ 0.653_{\pm 0.042} \\ 0.633_{\pm 0.032} \end{vmatrix} $	IBS↓	DDC↓	25
CoxPH DEEPSURV	$ \begin{smallmatrix} 0.662 \pm 0.179 \\ 0.653 \pm 0.042 \\ 0.633 \pm 0.032 \\ 0.668 \pm 0.016 \end{smallmatrix} $	$\begin{array}{c} \text{IBS}\downarrow\\ 0.181_{\pm 0.007}\\ 0.182_{\pm 0.009}\end{array}$	$\begin{array}{c} \text{DDC}\downarrow\\ 0.183_{\pm 0.037}\\ 0.153_{\pm 0.066}\end{array}$	25 24
CoxPH DEEPSURV DEEPHIT	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{IBS}\downarrow\\ 0.181_{\pm 0.007}\\ 0.182_{\pm 0.009}\\ 0.205_{\pm 0.006}\end{array}$	$\begin{array}{c} \text{DDC} \downarrow \\ 0.183_{\pm 0.037} \\ 0.153_{\pm 0.066} \\ 0.342_{\pm 0.023} \end{array}$	25 24 3
CoxPH DEEPSURV DEEPHIT DRSA	$ \begin{smallmatrix} 0.662 \pm 0.179 \\ 0.653 \pm 0.042 \\ 0.633 \pm 0.032 \\ 0.668 \pm 0.016 \end{smallmatrix} $	$\begin{array}{c} \text{IBS}\downarrow\\ 0.181_{\pm0.007}\\ 0.182_{\pm0.009}\\ 0.205_{\pm0.006}\\ 0.278_{\pm0.018}\end{array}$	$\begin{array}{c} \text{DDC} \downarrow \\ 0.183_{\pm 0.037} \\ 0.153_{\pm 0.066} \\ 0.342_{\pm 0.023} \\ 0.402_{\pm 0.055} \end{array}$	25 24 3 0
CoxPH DEEPSURV DEEPHIT DRSA DCS	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{IBS}\downarrow\\ 0.181_{\pm 0.007}\\ 0.182_{\pm 0.009}\\ 0.205_{\pm 0.006}\\ 0.278_{\pm 0.018}\\ 0.181_{\pm 0.008}\end{array}$	DDC \downarrow 0.183 $_{\pm 0.037}$ 0.153 $_{\pm 0.066}$ 0.342 $_{\pm 0.023}$ 0.402 $_{\pm 0.055}$ 0.124 $_{\pm 0.025}$	25 24 3 0 10
CoxPH DEEPSURV DEEPHIT DRSA DCS X-CAL	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{IBS} \downarrow \\ 0.181_{\pm 0.007} \\ 0.182_{\pm 0.009} \\ 0.205_{\pm 0.006} \\ 0.278_{\pm 0.018} \\ 0.181_{\pm 0.008} \\ 0.181_{\pm 0.010} \\ 0.179_{\pm 0.006} \\ 0.179_{\pm 0.007} \end{array}$	$\begin{array}{c} \text{DDC} \downarrow \\ 0.183 \pm 0.037 \\ 0.153 \pm 0.066 \\ 0.342 \pm 0.023 \\ 0.402 \pm 0.055 \\ \textbf{0.124} \pm 0.025 \\ 0.166 \pm 0.020 \\ \hline 0.154 \pm 0.029 \\ 0.155 \pm 0.026 \end{array}$	25 24 3 0 10 8
CoxPH DEEPSURV DEEPHIT DRSA DCS X-CAL \mathcal{L}_{NLL}	$ \begin{vmatrix} 0.662_{\pm 0.179} \\ 0.653_{\pm 0.042} \\ 0.633_{\pm 0.032} \\ 0.668_{\pm 0.016} \\ 0.677_{\pm 0.017} \\ 0.675_{\pm 0.017} \\ 0.668_{\pm 0.019} \end{vmatrix} $	$\begin{array}{c} \text{IBS} \downarrow \\ 0.181_{\pm 0.007} \\ 0.182_{\pm 0.009} \\ 0.205_{\pm 0.006} \\ 0.278_{\pm 0.018} \\ 0.181_{\pm 0.008} \\ 0.181_{\pm 0.010} \\ 0.179_{\pm 0.006} \end{array}$	DDC \downarrow 0.183 \pm 0.037 0.153 \pm 0.066 0.342 \pm 0.023 0.402 \pm 0.055 0.124\pm0.025 0.166\pm0.020 0.154\pm0.029	25 24 3 0 10 8 0

