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Regression with Linear Network
Setup:  The   from   and w.l.o.g assume the labels are generated by  
  and   .

(xi)n
i=1 ℝp

yi = U⊤
* xi ∈ ℝk U* ∈ ℝd×k

Linear Network: Let hidden 
layer be   and weight 
layer  .  The network  
represents the function 
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Square Loss:    where   denotes the data in 
a matrix form.

L(W1, W2) =
1
2

∥Y − XW1W2∥2 X, Y

(a) Gradient Descent (b) Stochastic Gradient Descent

The directions of columns of   at the end 
of training linear network.

W1

A simple illustration:  Let us consider the case with  , we train GD 
and SGD with same initialization 

k = 1

SGD and simple structures:  
a) Limiting dynamics of SGD - Blanc et. al. 2020, Damian et. al. 2020, Li et. 

al.  2021.  
b)SGD on diagonal networks and bias to sparse predictor- Pesme et. al. 

2021, Pillaud-Vivien et.al. 2022  
c) Empirical works in deep networks - Andruischenko et. al. 2023, Chen et. 

al. 2023. 

Dichotomy via Determinant

How does stochasticity enable the emergence 
of simple structures?

Gradient Flow: Gradient flow on linear networks can be written as  

  

Let the equivalent linear predictor  ,  .  

Block Matrix: Using a block matrix  .  

 ,  

reveals the inherent multiplicative nature of the gradient in linear networks.  

Stochastic Gradient Flow:  We choose a continuous version of Label noise 
gradient descent.  With   and   being the standard Brownian motion 
and noise level,  

 ,

dW1 = − ∇W1
L(W1, W2)dt = X⊤(Y − XW1W2)W⊤

2 dt,

dW2 = − ∇W2
L(W1, W2)dt = W⊤

1 X⊤(Y − XW1W2)dt .

β = W1W2 ∇L(β) = X⊤(Xβ − Y )

θ = [W⊤
1 |W2] ∈ ℝl×(p+k)

dθ = θ J dt where J := [
0p×p −∇L(β)

−∇L(β)⊤ 0k×k ]

Bt ∈ ℝn×k δ

dθ = θ [Jdt + ηδdξ] dξ :=
0p×p X⊤dBt

(X⊤dBt)⊤ 0k×k

Theorem : For the SGF,  the following property holds for the evolution of 
determinant   

  

Hence,   where   is 

the initialization.  

Comments :  

a) For GF,   -> rank preserving invariant. 

b) For SGF,   -> SGF diminishes the rank and 

simplifies the parameters.  

Limitations :  

a) Diminishing only the smallest singular value is sufficient to reduce the 
determinant. Therefore the above result does not capture the complete 
simplification of the parameters 

b) The dichotomy is effective only when   , which occurs 
when   , thereby limiting the result to networks with large 
widths

d(det(θ⊤θ)) = − 2ηδk Tr{(X⊤X)} det(θ⊤θ)dt .

det(θ⊤θ) = det(θ⊤
0 θ0)exp {−2δkTr{(X⊤X)}t} θ0

det(θ⊤θ) = det(θ⊤
0 θ0)

lim
t→∞

det (θ(t)⊤θ(t)) → 0

det(θ⊤
0 θ0) ≠ 0

l ⩾ p + k

SVD:  Let  .  Let   be the eigenvalues of   
(squared singular values of W) 

Theorem:  Until the collision time, the evolution of eigenvalues is given by  

 

W = UΣV⊤ s1, s2, …sl W⊤W

d(si) = pc2
i dt+

l

∑
j≠i

sic2
j + sjc2

i

si − sj
dt + 2 sic2

i (dX̃)i

Repulsive Force between Singularvalues
From the SDE on the matrix-valued process on  , we can derive the SDE 
governing the singular values [Dyson,1962, Bru, 1989].  

Time rescaled SGF for scalar regression, ,  

 

θ

W1 = W, W2 = a, X = I

dW = dXa⊤; da = W⊤dX,  where dX =
1
ηδ

(Y − Wa)dt + dBt

Forces at play:  

(a) A repulsion force between the eigenvalues due to the skew-symmetric 
term 

(b) A pull towards zero due to the Geometric Brownian motion 

 dlog (si) = p
c2
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attraction towards 0 repulsion between 
singular values 
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Empirics with ReLU: Let  , we train one hidden layer ReLU network 
with GD and SGD from the same initialization.

k = 1
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Teacher :      Student:   y =
3

∑
i=1

σ(x⊤w*i ) y =
m

∑
j=1

σ (w⊤
j x)

Neurons in ReLU networks aligns along the teacher directions when 
trained with a noise level  . δ = 1


