
SGD vs GD : Rank Deficiency in Linear Networks
Aditya Varre, Margarita Sagitova, Nicolas Flammarion @ Theory of Machine Learning Lab (TML), Lausanne

Regression with Linear Network
Setup: The from and w.l.o.g assume the labels are generated by
 and .

(xi)n
i=1 ℝp

yi = U⊤
* xi ∈ ℝk U* ∈ ℝd×k

Linear Network: Let hidden
layer be and weight
layer . The network
represents the function

 .

W1 ∈ ℝd×l

W2 ∈ ℝl×k

f(x) = W⊤
2 W⊤

1 x

A linear network representing function f

 k l

 W1 W2

 p

Square Loss: where denotes the data in
a matrix form.

L(W1, W2) =
1
2

∥Y − XW1W2∥2 X, Y

(a) Gradient Descent (b) Stochastic Gradient Descent

The directions of columns of at the end
of training linear network.

W1

A simple illustration: Let us consider the case with , we train GD
and SGD with same initialization

k = 1

SGD and simple structures:
a) Limiting dynamics of SGD - Blanc et. al. 2020, Damian et. al. 2020, Li et.

al. 2021.
b)SGD on diagonal networks and bias to sparse predictor- Pesme et. al.

2021, Pillaud-Vivien et.al. 2022
c) Empirical works in deep networks - Andruischenko et. al. 2023, Chen et.

al. 2023.

Dichotomy via Determinant

How does stochasticity enable the emergence
of simple structures?

Gradient Flow: Gradient flow on linear networks can be written as

Let the equivalent linear predictor , .

Block Matrix: Using a block matrix .

 ,

reveals the inherent multiplicative nature of the gradient in linear networks.

Stochastic Gradient Flow: We choose a continuous version of Label noise
gradient descent. With and being the standard Brownian motion
and noise level,

 ,

dW1 = − ∇W1
L(W1, W2)dt = X⊤(Y − XW1W2)W⊤

2 dt,

dW2 = − ∇W2
L(W1, W2)dt = W⊤

1 X⊤(Y − XW1W2)dt .

β = W1W2 ∇L(β) = X⊤(Xβ − Y)

θ = [W⊤
1 |W2] ∈ ℝl×(p+k)

dθ = θ J dt where J := [
0p×p −∇L(β)

−∇L(β)⊤ 0k×k]

Bt ∈ ℝn×k δ

dθ = θ [Jdt + ηδdξ] dξ :=
0p×p X⊤dBt

(X⊤dBt)⊤ 0k×k

Theorem : For the SGF, the following property holds for the evolution of
determinant

Hence, where is

the initialization.

Comments :

a) For GF, -> rank preserving invariant.

b) For SGF, -> SGF diminishes the rank and

simplifies the parameters.

Limitations :

a) Diminishing only the smallest singular value is sufficient to reduce the
determinant. Therefore the above result does not capture the complete
simplification of the parameters

b) The dichotomy is effective only when , which occurs
when , thereby limiting the result to networks with large
widths

d(det(θ⊤θ)) = − 2ηδk Tr{(X⊤X)} det(θ⊤θ)dt .

det(θ⊤θ) = det(θ⊤
0 θ0)exp {−2δkTr{(X⊤X)}t} θ0

det(θ⊤θ) = det(θ⊤
0 θ0)

lim
t→∞

det (θ(t)⊤θ(t)) → 0

det(θ⊤
0 θ0) ≠ 0

l ⩾ p + k

SVD: Let . Let be the eigenvalues of
(squared singular values of W)

Theorem: Until the collision time, the evolution of eigenvalues is given by

W = UΣV⊤ s1, s2, …sl W⊤W

d(si) = pc2
i dt+

l

∑
j≠i

sic2
j + sjc2

i

si − sj
dt + 2 sic2

i (dX̃)i

Repulsive Force between Singularvalues
From the SDE on the matrix-valued process on , we can derive the SDE
governing the singular values [Dyson,1962, Bru, 1989].

Time rescaled SGF for scalar regression, ,

θ

W1 = W, W2 = a, X = I

dW = dXa⊤; da = W⊤dX, where dX =
1
ηδ

(Y − Wa)dt + dBt

Forces at play:

(a) A repulsion force between the eigenvalues due to the skew-symmetric
term

(b) A pull towards zero due to the Geometric Brownian motion

 dlog (si) = p
c2

i

si
dt − 2

c2
i

si
dt+

1
si

l

∑
j≠i

sic2
j + sjc2

i

si − sj
dt + 2

c2
i

si
(dX̃)i

0 sj si

attraction towards 0 repulsion between
singular values

References:
a) Blanc et. al. Implicit regularization for deep neural networks

driven by an ornstein-uhlenbeck like process, COLT 2020.
b) Li et. al. What happens after sgd reaches zero loss?–a

mathematical framework., ICLR 2021
c) M.-F. Bru. Diffusions of perturbed principal component analysis,

1989
d) Chen et. al. Stochastic collapse: How gradient noise attracts

SGD dynamics towards simpler subnetworks, NeurIPS 2023

Empirics with ReLU: Let , we train one hidden layer ReLU network
with GD and SGD from the same initialization.

k = 1

w?
1

w?
2

w?
3

±=0.00

wi randomly initialized

wi after training

w?
1

w?
2

w?
3

±=1.00

wi randomly initialized

wi after training

Teacher : Student: y =
3

∑
i=1

σ(x⊤w*i) y =
m

∑
j=1

σ (w⊤
j x)

Neurons in ReLU networks aligns along the teacher directions when
trained with a noise level . δ = 1

