
Our Contributions

1.  
•We identify the correct score function to solve Issue #1. 
•We show our score is scale-invariant to solve Issue #2. 
•Solving (1) gives the sparsest DAG structure that 

generates the data, and all solutions belong to the same 
Markov Equivalence class. 

•Experiments on linear, nonlinear, non-Gaussian data 
•Code+implementation: github.com/Duntrain/dagrad
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Markov Equivalence and Consistency in Differentiable Structure Learning

Background

1.  
2. 

•Main question: Given data  , how to learn a DAG  
that best fits the data? 

This is referred to as “Causal Discovery”. 
•Differentiable structure learning formulates this as 
an optimization problem, 

 

Constraint:  is a DAG.

X G

min
B∈ℝp×p

s(B; X) subject to  h(B) = 0. (1)

h(B) = 0 ⇔ B

Issue #1: Limitations of Current Score 

1.  
2. 

⭐  Score function  plays a crucial role in (1). 

• Least squares (LS) loss (aka “reconstruction loss”) has 
known theoretical limitations; is not compatible with 
traditional causal notions (faithfulness, Markov, etc.) 

• -regularized log-likelihood as score function leads to 
biased estimation. 

• -regularized log-likelihood is non-differentiable 
• There is a lack of a unified score function that can: 
 (I) Guarantee a meaningful learned structure.  
(II) Enable unbiased parameter estimation.  
(III) Maintain the differentiability of optimization (1). 
Can this be accomplished?

s(B; X)

ℓ1

ℓ0

Issue #2 Scale-invariance
1.  • LS loss is also not scale-invariant. i.e. re-scaling the 

data  can dramatically change the output. 
• This has been used to argue that differentiable DAG 
learning with the LS loss is not scale-invariant.

X

1.  
2. 

• Data generated by linear SEM with Gaussian Noise 

                              

 

• Model is unidentifiable.  

• The simplest structure is preferred

 

•  How can we penalize the number of edges using differentiable penalty? 

quasi-MCP:  

• Score function consists of NLL+quasi-MCP 

                         

• Define global optimizers of optimization above 

           

X = B⊤X + N (2)
N ∼ 𝒩(0,Ω), Ω = diag(ω2

1 , …, ω2
p )

X ∼ 𝒩(0,Σ) Σ = Σf (B, Ω) := (I − B)⊤Ω(I − B)−1

ℰ(Σ) := {(B, Ω) : Σf (B, Ω) = Σ}

ℰmin(Σ) : {(B, Ω) : sB ≤ sB̃, ∀(B̃, Ω̃) ∈ ℰ(Σ), (B, Ω) ∈ ℰ(Σ)}

pλ,δ(t) = λ[( | t | −
t2

2δ
)1( | t | < δ ) +

δ
2

1( | t | > δ )]

s(B, Ω; λ , δ, X) = ℓn(B, Ω) + pλ,δ(B)

𝒪n,λ,δ = {(B*, Ω*) : (B*, Ω*) is a minimizer of (1)}

General Linear Gaussian Model 

Theoretical Guarantees

1.  
2. 

Theorem 1 (MEC):  follows model (2). For sufficient small  

(independent of ), it holds that 

If  is faithful to . Then,  

X λ , δ > 0
n P(𝒪n,δ,λ = ℰmin(Σ0)) → 1,as n → ∞ .

P(X ) G0 P(𝒪n,δ,λ = ℳ(G0)) → 1, as n → ∞ .

Theorem 2(Scale-invariant): Let  be the standardized version of . 

For all small  (independent of )  

for all . For all small , 

 

Z X
λ , δ ≥ 0 n 𝒢(𝒪n,δ,λ(X)) = 𝒢(𝒪n,δ,λ(Z))

n λ , δ > 0
P[𝒢(𝒪n,δ,λ(X)) = 𝒢(𝒪n,δ,λ(Z)) = 𝒢(ℰmin(Σf (B0, Ω0)))] → 1, as n → ∞

General Model

1.  
2. 

•Let , define the equivalence class and minimal 
equivalence class 

 
 

•Score functions: NLL with quasi-MCP 

  

X ∼ P(X; ψ 0, ξ0)

ℰ(ψ 0, ξ0) = {(ψ, ξ ) : P(x; ψ, ξ ) = P(x; ψ 0, ξ0), ∀x ∈ ℝp}
ℰmin(ψ 0, ξ0) = {(ψ, ξ ) : sB(ψ) ≤ sB(ψ̃), ∀(ψ̃, ξ̃ ) ∈ ℰ(ψ 0, ξ0), (ψ, ξ ) ∈ ℰ(ψ 0, ξ0)}

min
ψ,ξ

ℓn(ψ, ξ ) + pλ,δ(B(ψ)) subject to h(B(ψ)) = 0 (3)

𝒪n,λ,δ = {(ψ*, ξ*) : (ψ*, ξ*) is minimizer of (3)}

Theorem 3 (MEC): Let , under certain assumptions. 

For sufficient small  (independent of ), then

If additionally  is 

faithful to , then 

X ∼ P(X; ψ 0, ξ0)
λ , δ > 0 n

P(𝒪n,δ,λ = ℰmin(ψ 0, ξ0)) → 1,as n → ∞ . P(X )

G0 P(𝒪n,δ,λ = ℳ(G0)) → 1, as n → ∞ .

Experiments 

1.  
2. 

General Linear Gaussian Model

Logistic Model

Nonlinear Model (MLP)

Code: Paper:More in Paper!

http://github.com/Duntrain/dagrad

