The university of CHICAGOMarkov Equivalence and Consistency in Differentiable Structure Learning

Chang Deng⁺, Kevin Bello^{+‡}, Pradeep Ravikumar[‡], Bryon Aragam[†] [†] The University of Chicago [‡] Carnegie Mellon University

More in Paper! Paper

Background

• Main question: Given data X, how to learn a DAG G that best fits the data?

4.00 -1.14 0.20 -2.37 -1.05 0.35 -0.66 -0.39estimate

This is referred to as "Causal Discovery". •Differentiable structure learning formulates this as an optimization problem,

min $s(B; \mathbf{X})$ subject to h(B) = 0. (1) $B \in \mathbb{R}^{p \times p}$ Constraint: $h(B) = 0 \Leftrightarrow B$ is a DAG.

Issue #1: Limitations of Current Score

 \geq Score function $s(B; \mathbf{X})$ plays a crucial role in (1).

- Least squares (LS) loss (aka "reconstruction loss") has known theoretical limitations; is not compatible with traditional causal notions (faithfulness, Markov, etc.)
- ℓ_1 -regularized log-likelihood as score function leads t biased estimation.
- ℓ_0 -regularized log-likelihood is *non-differentiable*
- There is a lack of a unified score function that can:
- (I) Guarantee a meaningful learned structure.

(II) Enable unbiased parameter estimation.

(III) Maintain the differentiability of optimization (1). Can this be accomplished?

Issue #2 Scale-invariance

• LS loss is also not scale-invariant. i.e. re-scaling the

data **X** can dramatically change the output.

• This has been used to argue that differentiable DAG learning with the LS loss is not scale-invariant.

	Our Contributions	<u>General Model</u>
	 We identify the correct score function to solve Issue #1. We show our score is scale-invariant to solve Issue #2. Solving (1) gives the sparsest DAG structure that generates the data, and all solutions belong to the same Markov Equivalence class. Experiments on linear, nonlinear, non-Gaussian data Code+implementation: github.com/Duntrain/dagrad 	•Let $X \sim P(X; \psi^0, \xi^0)$, define the equivalence class and minimal equivalence class $\mathscr{C}(\psi^0, \xi^0) = \{(\psi, \xi) : P(x; \psi, \xi) = P(x; \psi^0, \xi^0), \forall x \in \mathbb{R}^p\}$ $\mathscr{C}_{\min}(\psi^0, \xi^0) = \{(\psi, \xi) : s_{B(\psi)} \le s_{B(\tilde{\psi})}, \forall(\tilde{\psi}, \tilde{\xi}) \in \mathscr{C}(\psi^0, \xi^0), (\psi, \xi) \in \mathscr{C}(\psi^0, \xi^0)\}$ •Score functions: NLL with quasi-MCP $\min_{\psi, \xi} \mathscr{C}_n(\psi, \xi) + p_{\lambda,\delta}(B(\psi))$ subject to $h(B(\psi)) = 0$ (3) $\mathscr{O}_{n,\lambda,\delta} = \{(\psi^*, \xi^*) : (\psi^*, \xi^*) \text{ is minimizer of (3)}\}$
	<u>General Linear Gaussian Model</u>	Theorem 3 (MEC): Let $X \sim P(X; \psi^0, \xi^0)$, under certain assumptions. For sufficient small $\lambda, \delta > 0$ (independent of <i>n</i>), then $P(\emptyset = -\Re = (\psi^0, \xi^0)) \Rightarrow 1$ as $n \Rightarrow \infty$. If additionally $P(X)$ is
	• Data generated by linear SEM with Gaussian Noise $X = B^{T}X + N \qquad (2)$ $N \sim \mathcal{N}(0,\Omega), \Omega = \operatorname{diag}(\omega_1^2, \dots, \omega_p^2)$	faithful to G^0 , then $P(\mathcal{O}_{n,\delta,\lambda} = \mathcal{M}(G^0)) \to 1$, as $n \to \infty$.
.0	$X \sim \mathcal{N}(0,\Sigma) \Sigma = \Sigma_f(B,\Omega) := (I-B)^{T}\Omega(I-B)^{-1}$ • Model is unidentifiable . $\mathscr{C}(\Sigma) := \{(B,\Omega) : \Sigma_f(B,\Omega) = \Sigma\}$ • The simplest structure is preferred $\mathscr{C}_{\min}(\Sigma) : \{(B,\Omega) : s_B \le s_{\tilde{B}}, \forall (\tilde{B},\tilde{\Omega}) \in \mathscr{C}(\Sigma), (B,\Omega) \in \mathscr{C}(\Sigma)\}$ • How can we penalize the number of edges using differentiable penalty? quasi-MCP: $p_{\lambda,\delta}(t) = \lambda[(t - \frac{t^2}{2\delta})1(t < \delta) + \frac{\delta}{2}1(t > \delta)]$	
	 Score function consists of NLL+quasi-MCP s(B, Ω; λ, δ, X) = ℓ_n(B, Ω) + p_{λ,δ}(B) Define global optimizers of optimization above 𝒪_{n,λ,δ} = {(B*, Ω*) : (B*, Ω*) is a minimizer of (1)} 	Image: state of the state
	Theorem 1 (MEC): <i>X</i> follows model (2). For sufficient small $\lambda, \delta > 0$ (independent of <i>n</i>), it holds that $P(\mathcal{O}_{n,\delta,\lambda} = \mathscr{C}_{\min}(\Sigma^0)) \to 1$, as $n \to \infty$. If $P(X)$ is faithful to G^0 . Then, $P(\mathcal{O}_{n,\delta,\lambda} = \mathscr{M}(G^0)) \to 1$, as $n \to \infty$. Theorem 2(Scale-invariant): Let Z be the standardized version of X .	CM CM CM CM CM CM CM CM CM CM
	For all small $\lambda, \delta \geq 0$ (independent of <i>n</i>) $\mathscr{G}(\mathscr{O}_{n,\delta,\lambda}(\mathbf{X})) = \mathscr{G}(\mathscr{O}_{n,\delta,\lambda}(\mathbf{Z}))$ for all <i>n</i> . For all small $\lambda, \delta > 0$,	

Code:

 $P[\mathscr{G}(\mathscr{O}_{n,\delta,\lambda}(\mathbf{X})) = \mathscr{G}(\mathscr{O}_{n,\delta,\lambda}(\mathbf{Z})) = \mathscr{G}(\mathscr{E}_{\min}(\Sigma_f(B^0,\Omega^0)))] \to 1, \text{ as } n \to \infty$