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Background

Black—box optimization
* The objective function lacks a mathematical analytical form, can only be
evaluated by inputs

argmaXx,ex f (x)

Expensive black—-optimization problems
* Problem evaluations comes with high computational or economic costs.
e Only a limited number of evaluations available
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e |nitialization: better initializations for warm-start

e Surrogate model: multi-task GP, deep kernel learning
e Acquisition function: balance between source and target task

common component
can be applied to different
optimizers




Motivation

Transfer optimization on search space

e Space pruning [Wistuba et al., PKDD'15]
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e High—quality subspace integration [Li et al. kDD 22]
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® Space pruning [wistuba et al., PKDD'15]

e Hypercube/ellipsoid space extraction [rerrone et al., NeurlPs'19]
e High—quality subspace integration [Li et al. kDD 22]

More applicable when source tasks are similar to target tasks;

However, it’s difficult to identify task similarities in advance in BBO

Key questions:
How to automatically identify the most relevant source tasks and
leverage their information for search space transfer?




MCTS-transfer

Main ldea: leverage MCTS to divide search spaces
considering the source task
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Tree Building Rule: for any node, the potential value of
the left child node is higher than that of the right child
node (=>C)
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SEARCH SPACE PRE-LERANING OPTIMIZATION INITIALIZATION

Pre—learning stage: divide the search space based on source task data
e Start from the root node, for node m, if it can be split:
— Use K-Means to divide the samples in node into two clusters
— Use a binary classifier to separate the two clusters and divide the space
— Calculate node potential
e The cluster with higher potential be the left child node

ZZSK Z(.’Ei,j ,yi,j)EDiﬂQm y’l’a]
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ZigK |Di 2 Q'm|
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Optimization stage
* Node Selection: select the node m with higher UCB from ROOT

ucb,, = i—m + ch\/Z log (ny) /nm D =1 ZigK WY m N7
m ZigK W 7

e Simulation: sample in the node m, select the query point x by acquisition
function and evaluate x
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Optimization stage
* Node Expansion: expand all splitable nodes
e Backward Update and Tree Reconstruction:

— Update similarity, ranking, and task weights w; based on the evaluation

— Update node potential based on w;

— check for any subtrees that violate the tree-building rules; if found,
reconstruct the subtree.
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Comparasion

Experiments
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validity: superiority
especially in mixed and
dissimilar setting

reasonableness: weights
of similar tasks are higher

robustness: stable
performance in complex
or high—dimensional
problems
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Runtime Analysis

Times
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Computational cost:
the additional computation
overhead is minor

Reconstruction frequency:
average frequency is low
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Conclusion

Advantages

o Automatically identify similar source tasks and assign greater weight to fully
utilize source task, accelerating the optimization process

e Dynamically adjust tree structure to increase the probability of the optimal
solution locating in the best leaf node

e MCTS-transfer has surpassed the baselines in numerous experiments with
introducing minor computational overhead

Future Work
e Extend MCTS-transfer to heterogeneous search space transfer
e Explore more node potential measurement methods

e Build theoretical guarantees
Thank youl!
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