

Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement

Speaker: Tao Yang

1. Background

2. Method

3. Experiment

(4) Disentangled Models & Visual Concept Learning

Objective: Empower the existing AI models the ability of humanlike concept induction, and develop a unified foundation model to achieve artificial general intelligence.

An AI must fundamentally understand the world around us, and we argue that this can only be Concepts can be represented by distributed patterns of activaty in networks of neuron-like units. achieved if it can learn to identify and disentangle the underlying explanatory factors hidden in One advantage is automatic generalization. ——Geoffre Hinton "Distributed Representation the observed milieu of low-level sensory data ——Yshua Bengio "Representation Learning: A

1. Background

(5) Challenges

□ Unknown Mechanism of Induction

Color: black, brown, ... Shape: square, round, Material: wooden, ... Azimuth: left, right, ...

Complexity of Iron and

- Occlusion
- Complex Concept
- Complex Scene

D Difficulty of obtaining labeley, there are many concepts and many object

1. Background

(5) Challenges

Motivation

- VAEs and GANs based methods primarily rely on probability-based regularizations applied to the latent space.
- In text-to-image generation, a conditional diffusion model integrates the "disentangled" text tokens by cross attention, demonstrating the ability to generate semantically aligned images.
- Locatello et al. (2019) demonstrate that relying solely on regularizations is insufficient

□ Network Design

The image encoder τφ aims to provide a set of concept tokens S = {s1, ···, sN}, which act similarly to the word embeddings in the prompts for text-to-image generation in stable diffusion.

 We treat each dimension of the encoded feature vector as a disentangled factor and map each factor to a vector (i.e., concept token) by non-shared MLP layers

Network Design

To condition the concept tokens during image generation, cross-attention is used to map these tokens into the representations of the U-Net in the diffusion model. This is accomplished using the cross attention $Attention(Q, K, V) = Softmax(\frac{1}{\sqrt{d}}) \cdot V$ mechanism

where each spatial feature in the

intermediate feature map in diffusion serves

as a query, the concept tokens act as keys

and values.

The Information Bottleneck

The diffusion model optimizes a network (e.g., U-Net) ϵ_{θ} to predict the noise from the noisy input x_t and the condition S (concept tokens), with the loss function defined as $\mathcal{L}_r = \mathbb{E}_{x_0,\varepsilon,t} \| \epsilon_{\theta}(x_t, t, S) - \varepsilon \|.$

We can interpret the loss function as a reconstruction of latent

input x_0 . The loss function $\mathbb{1}_r$ can be rewritten as: $\mathcal{L}_r = \Sigma_{t \ge 1} |C_t - D(p_\theta(x_{t-1}|x_t, \mathcal{S})||q(x_{t-1}))|,$

The loss function of AnnealVAE

$$egin{aligned} \mathcal{L}(arphi, \phi) &= - \, E_{q_arphi(z|x)}[\log p_\phi(x|z)] \ &+ \gamma |C - D_{KL}(q_arphi(z|x))||p(z))|, \end{aligned}$$

Quantitative Analysis

Method	Cars	3D	Shapes	s3D	MPI3D		
	FactorVAE score↑	DCI↑	FactorVAE score↑	DCI↑	FactorVAE score↑	DCI↑	
			VAE-based:				
FactorVAE 17 β -TCVAE 4	$\begin{array}{c} 0.906 \pm 0.052 \\ 0.855 \pm 0.082 \end{array}$	$\begin{array}{c} 0.161 \pm 0.019 \\ 0.140 \pm 0.019 \end{array}$	$\begin{array}{c} 0.840 \pm 0.066 \\ 0.873 \pm 0.074 \end{array}$	$\begin{array}{c} 0.611 \pm 0.082 \\ 0.613 \pm 0.114 \end{array}$	$\begin{array}{c} 0.152 \pm 0.025 \\ 0.179 \pm 0.017 \end{array}$	$\begin{array}{c} 0.240 \pm 0.051 \\ 0.237 \pm 0.056 \end{array}$	
			GAN-based:				
InfoGAN-CR 21	0.411 ± 0.013	0.020 ± 0.011	0.587 ± 0.058	0.478 ± 0.055	0.439 ± 0.061	0.241 ± 0.075	
		Pre	e-trained GAN-based:				
LD <mark>29</mark> GS 111 DisCo 26	$\begin{array}{c} 0.852 \pm 0.039 \\ 0.932 \pm 0.018 \\ 0.855 \pm 0.074 \end{array}$	$\begin{array}{c} 0.216 \pm 0.072 \\ 0.209 \pm 0.031 \\ 0.271 \pm 0.037 \end{array}$	$\begin{array}{c} 0.805 \pm 0.064 \\ 0.788 \pm 0.091 \\ 0.877 \pm 0.031 \end{array}$	$\begin{array}{c} 0.380 \pm 0.062 \\ 0.284 \pm 0.034 \\ 0.708 \pm 0.048 \end{array}$	$\begin{array}{c} 0.391 \pm 0.039 \\ 0.465 \pm 0.036 \\ 0.371 \pm 0.030 \end{array}$	$\begin{array}{c} 0.196 \pm 0.038 \\ 0.229 \pm 0.042 \\ 0.292 \pm 0.024 \end{array}$	
			Diffusion-based:				
DisDiff [37] EncDiff (Ours)	$\begin{array}{c} {\bf 0.976} \pm 0.018 \\ {0.773} \pm 0.060 \end{array}$	$\begin{array}{c} 0.232 \pm 0.019 \\ \textbf{0.279} \pm 0.022 \end{array}$	$\begin{array}{c} 0.902 \pm 0.043 \\ \textbf{0.999} \pm 0.000 \end{array}$	$\begin{array}{c} 0.723 \pm 0.013 \\ \textbf{0.969} \pm 0.030 \end{array}$	$\begin{array}{c} 0.617 \pm 0.070 \\ \textbf{0.872} \pm 0.049 \end{array}$	$\begin{array}{c} 0.337 \pm 0.057 \\ \textbf{0.685} \pm 0.044 \end{array}$	

Quantitative Results on CelebA

Model	TAD \uparrow	$FID\downarrow$
β-VAE [14]	0.088 ± 0.043	99.8 ± 2.4
InfoVAE 40	0.000 ± 0.000	77.8 ± 1.6
Diff-AE 24	0.155 ± 0.010	22.7 ± 2.1
InfoDiffusion [31]	0.299 ± 0.006	23.6 ± 1.3
DisDiff 37	0.305 ± 0.010	18.2 ± 2.1
EncDiff	0.638 ± 0.008	14.8 ± 2.3

Qualitative Results

Qualitative Results

SRC	0.0			\$		000	SRC	#		~	000			<u>_</u>
TRT	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			\$	\$	TRT	,		,	\$			
None		a				000	Color	~		<i>@</i>		<i>~</i>		<i>~</i>
None	0.0		-				Azimuth			to o				1020
Azimuth	-0-0	4 2 34	.	A	6.0	~	Shape	@		<i>a</i>	~~ >			and the second second
Grey	College	-			<i>~</i>	000	Orien	<i>i</i>	-	<i>a</i>	60 .0			000
None		A				000	None	<i>i</i>	-	~	60 10		\$	
Car color	0.0			۲			None	#		~			\$	<i>~</i>
DisDiff						I	EncDiff (Ours)							

Visualization of Attention Map

□ Ablation Study

Metho	d	FactorVAE score↑		DCI↑		Method		FactorVAE score↑	DCI↑	
EncDiff w/sqrt $0.997 \pm$ EncDiff w/sqrt linear $0.988 \pm$		0.011 0.026	$0.950 \pm 0.$ $0.924 \pm 0.$.041 .050	EncDec w/o Diff EncDiff w/ AdaGN		$0.537 \pm 0.074 \\ 0.911 \pm 0.101$	$0.178 \pm 0.050 \\ 0.637 \pm 0.068$		
EncDiff w/linear		0.999 ± 0.002		$0.930 \pm 0.$.045	_ EncDiff		0.999 ± 0.000	0.969 ± 0.030	
EncDiff w/cosine		$\textbf{0.999} \pm 0.001$		0.969 ± 0	.030) —				
	_			_						
Method	Params.↓	(M)	$FLOPs {\downarrow} (M)$	Time↓	(s)	Method	Facto	orVAE score \uparrow	DCI↑	
Diff-AE 24	67.8	3	3955.1	31.0	0	EncDiff-V	0.9	0.000 ± 0.000	0.900 ± 0.045	
DisDiff 37	57.1	-	5815.8	35.3	3	EncDiff	0.9	0.001 ± 0.001	0.969 ± 0.030	
EncDiff	42.3	3	2898.5	11.8	8					

Thank you!