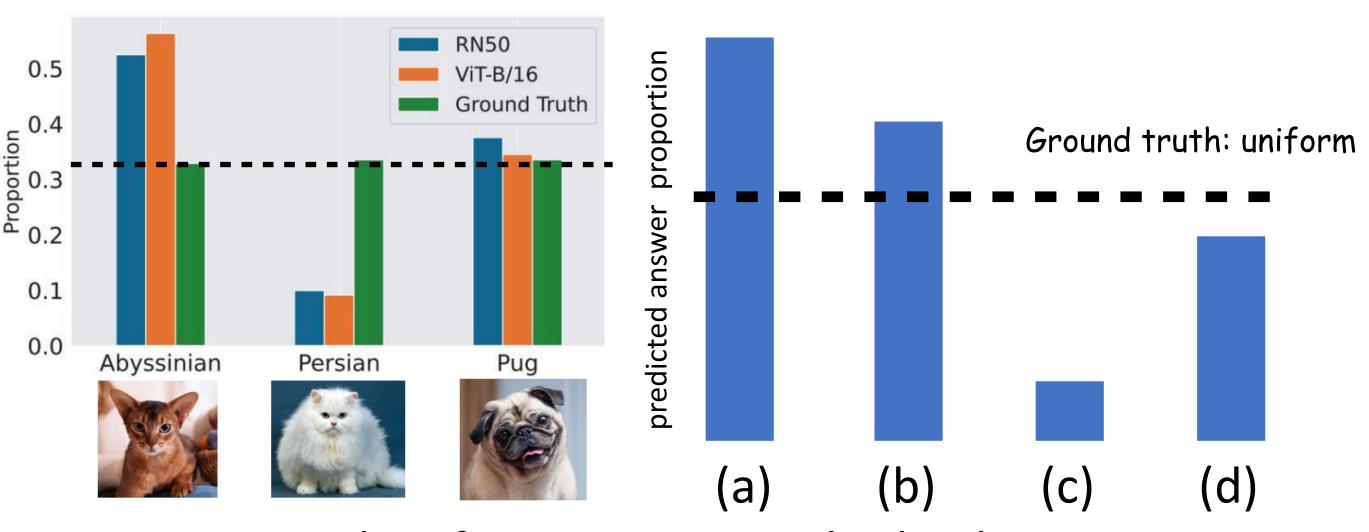


OTTER: Effortless Label Distribution Adaptation of Zero-shot Models

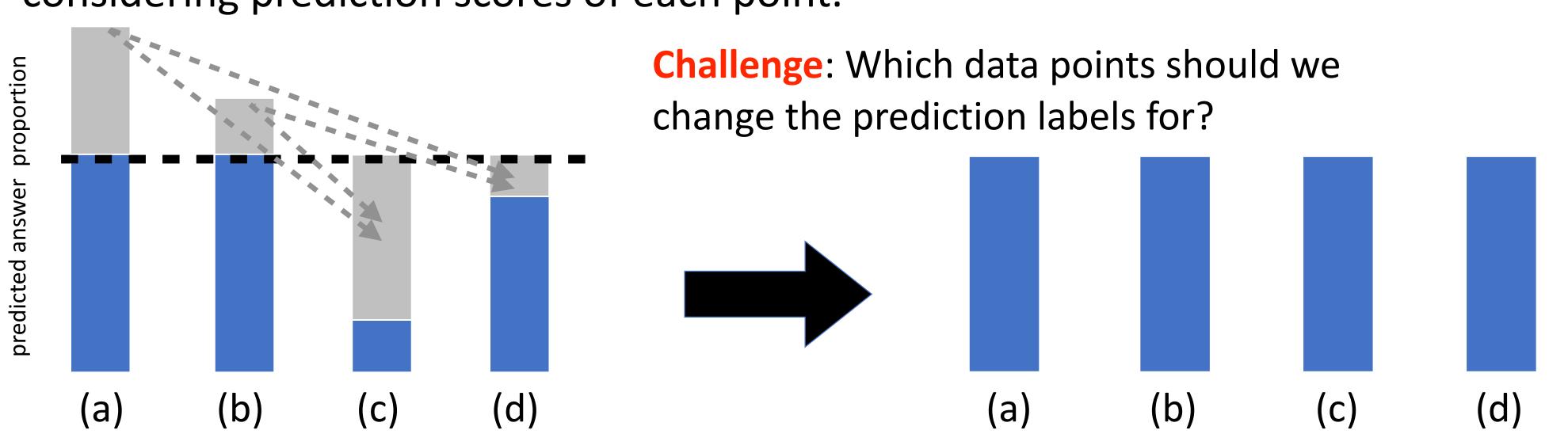
Changho Shin, Jitian Zhao, Sonia Cromp, Harit Vishwakarma, Frederic Sala University of Wisconsin-Madison



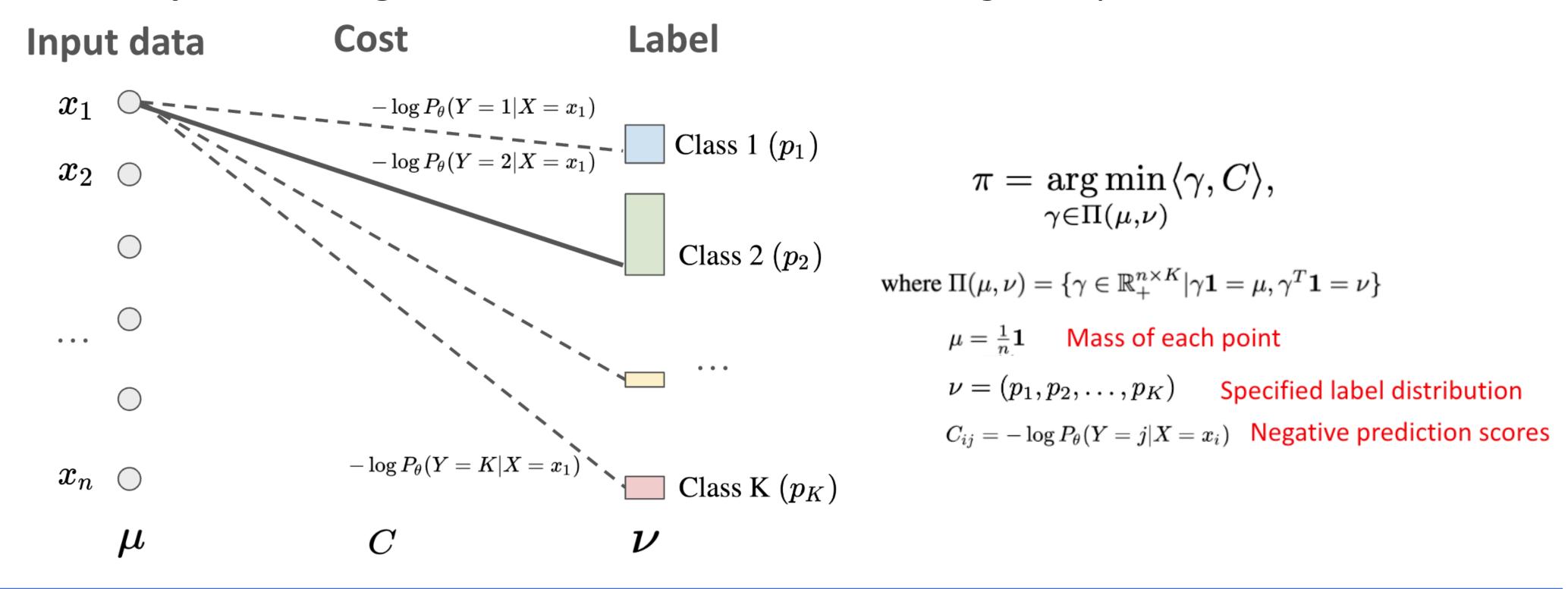
Paper Link

Background & Motivation

- * Foundation models often suffer from the biases introduced during pretraining.
- * Label distributions are inevitably mismatched in the downstream tasks, degrading model performance.


CLIP Image Classification LLM Multiple Choice Questions

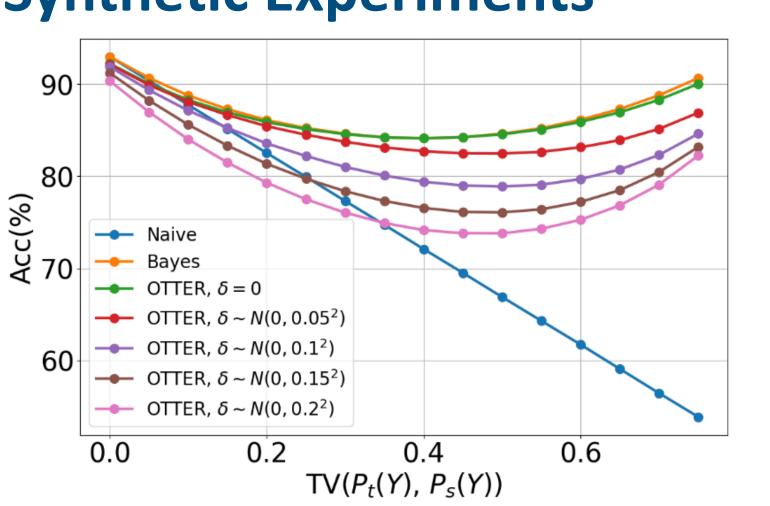
- * Can we adapt model predictions to specified label distributions instantly?
- * We introduce OTTER, an Optimal Transport-based method to adjust model predictions according to specified label distributions.

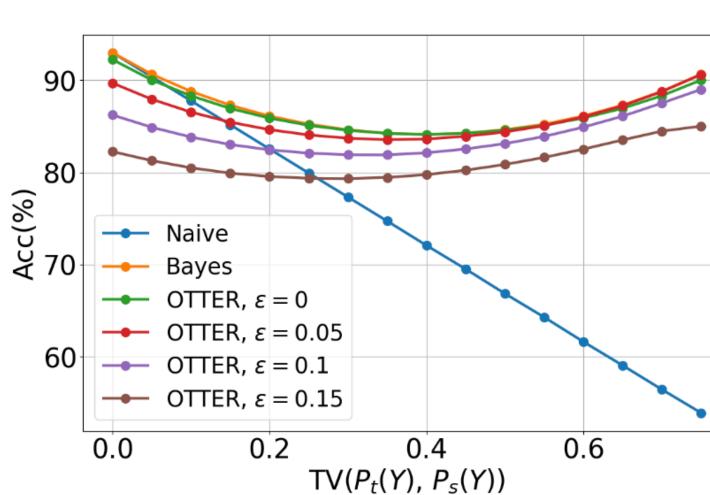

Idea

Redistribute model predictions to match specified label distribution, while still considering prediction scores of each point.

Method: Optimal Transport for Classification

Solve Optimal Assignment Problem with costs as negative prediction scores.




Theoretical Results

- **✓** OTTER ensures **consistency** with zero-shot predictions.
- ✓ Under label shift, OTTER with true label distribution works as a **Bayes-optimal classifier**. ✓ Its additional error beyond Bayes error decomposes into the errors in the specified label distribution and calibration.

Experiments

dence score.

(a) Prediction accuracy changes with perturbed confi- (b) Prediction accuracy changes with perturbed label

- * OTTER achieves the Bayes error rate in noise-free scenarios.
- error arises from the noise in label distribution specification and calibration.

Image & Text Classification

Zero-shot	t Prior Matching	OTTER		Zero-shot	Prior Matching	OTTER
88.3	$91.3 (\pm 0.0)$	91.7	Oxford-IIIT-Pet	83.8	$82.0 (\pm 0.3)$	88.8
63.8	$64.1 \ (\pm 2.7)$	67.9	Stanford-Cars	55.7	$39.8 \ (\pm 2.6)$	59.7
79.8	$59.3~(\pm 15.4)$	88.7	STL10	98.0	$98.4\ (\pm0.0)$	98.6
79.8	$9.5~(\pm 1.5)$	87.0	SUN397	47.1	$6.7 (\pm 1.6)$	54.1
19.8	$19.0~(\pm 0.1)$	21.1	CUB	46.0	$40.4 \ (\pm 0.0)$	50.4
i	, ,		i	·		
74.0	$58.8 \ (\pm 46.4)$	91.7	GenderBias	84.1	$41.4 (\pm 39.6)$	91.9
48.4	$57.2 \ (\pm 37.7)$	81.4	HateXplain	30.9	$31.3 (\pm 3.3)$	34.3
	88.3 63.8 79.8 79.8 19.8	88.391.3 (± 0.0)63.864.1 (± 2.7)79.859.3 (± 15.4)79.89.5 (± 1.5)19.819.0 (± 0.1)74.058.8 (± 46.4)	88.391.3 (± 0.0)91.763.864.1 (± 2.7)67.979.859.3 (± 15.4)88.779.89.5 (± 1.5)87.019.819.0 (± 0.1)21.1	63.8 $64.1 (\pm 2.7)$ 67.9 Stanford-Cars79.8 $59.3 (\pm 15.4)$ 88.7 STL1079.8 $9.5 (\pm 1.5)$ 87.0 SUN39719.8 $19.0 (\pm 0.1)$ 21.1 CUB74.0 $58.8 (\pm 46.4)$ 91.7 GenderBias	88.391.3 (± 0.0)91.7Oxford-IIIT-Pet83.863.864.1 (± 2.7)67.9Stanford-Cars55.779.859.3 (± 15.4)88.7STL1098.079.89.5 (± 1.5)87.0SUN39747.119.819.0 (± 0.1)21.1CUB46.074.058.8 (± 46.4)91.7GenderBias84.1	88.391.3 (± 0.0)91.7Oxford-IIIT-Pet83.882.0 (± 0.3)63.864.1 (± 2.7)67.9Stanford-Cars55.739.8 (± 2.6)79.859.3 (± 15.4)88.7STL1098.098.4 (± 0.0)79.89.5 (± 1.5)87.0SUN39747.16.7 (± 1.6)19.819.0 (± 0.1)21.1CUB46.040.4 (± 0.0)74.058.8 (± 46.4)91.7GenderBias84.141.4 (± 39.6)

* Achieves significant performance improvements.

LLM MCQ Selection Bias Mitigation

	ARC-Challenge				CommonsenseQA (CSQA)			
	Naive		OTTER		Naive		OTTER	
Model	Acc.(↑)	RStd (\downarrow)	Acc.	RStd	Acc.	RStd	Acc.	RStd
Llama-2-7b	36.0	27.4	45.5	1.7	31.9	28.4	42.7	3.8
Llama-2-13b	62.9	6.0	62.8	1.5	57.0	10.2	58.1	2.0
Llama-2-7b-chat	56.5	$ \overline{12.4}$	57.4	1.3	56.5	$-15.\overline{2}$	60.4	_{3.5} -
Llama-2-13b-chat	64.4	13.7	66.2	2.5	64.0	9.8	66.4	1.8
vicuna-7b	53.5	$ 8.\overline{6}$ $-$	54.1	2.3	⁻ 5 6 .9	8.3	57. 6	_{1.0} -
vicuna-13b	62.9	8.3	63.3	2.4	63.4	12.9	64.5	3.1

* Mitigates selection bias and enhances accuracy.