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Motivation: Interpretable Models

m DNNs are treated like black-box models:
m Given an input, the model takes a decision via an un-interpretable decision process.
m The model complexity, generally, hinders any potential examination of the underlying
process.

Deep Neural Network

Black Swan?
— Wading Bird?
Persian Cat?

Lack of interpretability

Undesired property, especially in safety- or bias- aware applications = Crucial research and
societal challenge
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Related Work: Concept Bottleneck Models

m Ante-hoc methods: Design models that are inherently interpetable, e.g., Concept
Bottleneck Models (CBMs) [1].
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m Several drawbacks:
Performance degradation compared to standard backbones,
Use of dense concept sets, all potentially contributing to the final decision,
Not suited for tasks that could exploit multi-granularity information.
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Coarse-to-Fine Concept Bottleneck Models

m A hierarchical approach to concept discovery.

m We consider a per-example discovery mechanism to limit concepts associated to each

example, and

m Leverage the notion of concept hierarchy to uncover both high and low level image

information.

Our proposal: Coarse-to-Fine Concept Bottleneck Models
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Proposed Approach: Concept Discovery Model Block

m Extract image and concept embeddings, £/(X) € RN*K and E7(A) € RP*K with CLIP,

m Compute :
Cos Similarity £ S oc E/(X)ET(A)T € RNxH (1)

m Adopt data-driven binary indicators Z € {0, 1}V*H to select a concept subset.
m Classify using Y = (Z-S)W[
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Proposed Approach: Concept Discovery Model Block

m Extract image and concept embeddings, £/(X) € RN*K and E7(A) € RP*K with CLIP,

m Compute :
Cos Similarity £ S oc E/(X)ET(A)T € RNxH (1)

m Adopt data-driven binary indicators Z € {0, 1}V*H to select a concept subset.
m Classify using Y = (Z-S)W[

Implementation:
m Z are obtained via a data-driven random sampling procedure:
m Amortized formulation: introduce a learnable weight matrix Wy € RX*H and use the image
embeddings E;(X;) to drive the process:

q(z;) = Bernoulli <z,-|sigmoid(E,(X,-)WsT>> (2)

m Advantages: (i) we only store Wy, and (ii) can generalize to unseen examples.
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Concept Discovery Model Block
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Coarse-to-Fine Concept Bottleneck Models
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m Discover concepts that describe the whole image, while exploiting information residing in

patch-specific regions.
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Coarse-to-Fine Concept Bottleneck Models

Discover high-level concepts for the whole image using a concept set Ay and
indicators Zy € {0,1}V*H . Each high level concept is described by L low-level attributes.

Discover the essential low-level concepts in the context of sub-regions of the image
using the concept set A; and indicators Z; € {0, 1}V*P>H-L

Having discovered which high level concepts are active, we can now further mask the
low-level concepts, i.e., zero-out the ones that are irrelevant, in a top-down way.

To formalize the linkage:

(Z1np o< Y _[ZHlnn - [Z0)npon, € {0, 1}F (3)
h
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CF-CBM: Experimental Results - Accuracy

m Training:
m Evidence Lower Bound (ELBO) via Stochastic Gradient Variational Bayes.
m Apy equals the set of classes and A; the available per-class attributes.

m Inference: Draw samples from the learned posterior and investigate the values of Z.

m Evaluation metrics: Accuracy and Sparsity (Average Percentage of Activated concepts)
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m Training:
m Evidence Lower Bound (ELBO) via Stochastic Gradient Variational Bayes.
m Apy equals the set of classes and A; the available per-class attributes.

m Inference: Draw samples from the learned posterior and investigate the values of Z.

m Evaluation metrics: Accuracy and Sparsity (Average Percentage of Activated concepts)

Dataset (Accuracy (%) || Sparsity (%))
Architecture Type Model Concepts  Sparsity cuB SUN ImageNet
Baseline (Images) X X 76.70 42.90 76.13
Non-Interpretable ~ CLIP Embeddings" X X 81.90 65.80 79.40
CLIP Embeddings" X X 47.80 46.00 62.85
Concept-Based Label-Free CBMs [2] v v 74.59 - 71.98
Whole Image CDMH[3] v X 80.30 66.25 75.22
High Level CDMH[3] v v 78.90/[19.00  64.55([13.00 | 76.55(/14.00
CF-CBM" (Ours) v v 79.50(|50.00  64.00||47.58 | 77.40]|27.20
Concept-Based CDMt v X 39.05 37.00 49.20
Patches CDM*- v v 59.62(|58.00  42.30|67.00 | 58.20(|25.60
Low Level CF-CBM! (Ours) v v 73.20([29.80 57.10([28.33 | 78.45//15.00
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CF-CBM: Experimental Results - Attribute Matching

m Classification performance is not appropriate for measuring interpretability.

m A new metric for interpretability in the context of concept-based methods given ground

truth attributes: Jaccard Index.

Attribute matching accuracy. We compare our approach to the recent CDM model trained with the
considered A; set. Then, we predict the matching between the inferred per-example concept indicators
to: (i) class-wise and (ii) per-example ground truth attributes found in both SUN and CUB.

Dataset (Matching Accuracy (%)|| Jaccard Index (%))

Model Attribute Set Train  Atrribute Set Eval SUN cuB

CDM(3] whole set class-wise 51.43/|26.00 39.00]|17.20
CDM*: whole set class-wise 30.95|26.70 25.81/|19.60
CF-CBM (Ours) hierarchy class-wise 53.10(/28.20 79.85||132.50
CDM(3] whole set example-wise 48.45[15.70 36.15||09.50
CDM- whole set example-wise 20.70/|15.00 17.65(/10.40
CF-CBM (Ours) hierarchy example-wise 49.92(/116.80 81.00/(17.60
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CF-CBM: Experimental Results - Qualitative Analysis

Original Concept Set

1Black body/white feathers bird revered and respected b
| Found in wetlands Australia/NZ very elegant bird .
! Black feathers/white stripes incubation period 32-. 34,
National icon  magnificent bird/beautiful black feathers |
iblack w/ white wingtips  become aggressive if threatened 1
.kept in zoos bill is red very gemle wingspan up to 2.5m}
'enjoyed by birdwatchers fleeing from predators I
iswim up to 30km/h  perform acrobatic in water '

+ graceful bird that can swim and object good swimmer |

light brown eyes small head small/delicate songbird |
small wading bird dark/brown color head is small !
and a black tail spiral shaped with a pointy end '
smooth, wet skin long/slender body with small white spots;
light brown coat with darker spots  breeds in tundra
mouth light color damp places small and black __black !

Figure: A random example from the Black Swan class of ImageNet-1k validation set. On the upper
part, the original concept set corresponding to the class is depicted; on the lower, some of the concepts
discovered via our novel CF-CBM.
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CF-CBM: Experimental Results - Qualitative Analysis

Figure: A random example from the Black Swan class of ImageNet-1k validation set. After training, we
have access to the discovered concepts on both the image and the patch level.
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The End

Thank you!

ArXiV: GitHub Repository:
arxiv.org/pdf/2310.02116.pdf github.com /konpanousis/Coarse-To-Fine-CBMs/
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