

DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution

Yang Yue*1Yulin Wang*1Bingyi Kang2Yizeng Han1Shenzhi Wang1Shiji Song1Jiashi Feng2Gao Huang^{†1}

¹ Department of Automation, BNRist, Tsinghua University

Presented by Yue Yang

yueyang22f@gmail.com

paper

code

² ByteDance

Background: MLLM for robot

GPT - 4

Llama-3.2

Empowering embodied AI (EAI): vision-language comprehension problem-solving capabilities

Generalist robot

Smart Home

Industrial Production

Elderly Care

Key Challenge: High Costs for Deployment

Embodied Large Model (ELM) Google RT-2

- > 55B parameters
- Memory: > <u>110G</u>
- Computation: > 200 GPUseconds for a simple grasp task

How to Reduce Costs in Embodied Large Model Inference? Promote the Democratization for Research and Industrial

EAI deployment

- High <u>Real-time</u> Requirements
 - Limited Memory on Edge Devices (ORIN 8G/16G)
- Limited Onboard <u>Battery Capacity</u>

Motivation

Key Challenge: High computation/ memory costs for deployment

Solution: dynamic inference for Embodied Large Models

and Scenario

Easy

Hard

Embodied Large Models: <u>Static, Equal</u> Processing of All Task Instructions and Stages

Human Decision Systems: **Dynamically and Adaptively** Adjust Costs Based on Task

OpenAI o1: Allocate More Computational Resources for Complex Tasks Stages Tasks

- Larger models are redundant for easy circumstances, wasting computation
- Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA)

 - **Early-exit**: exit at shallow layers for easy tasks

# LLM layers	
--------------	--

GFLOPs/action (LLM) Task success rate %

Seek to <u>automatically configure the size of MLLMs</u> conditioned on situation

24	12	6
31.2 78.9	15.6 78.0	7.8 75.7

Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA)

LLM depth

> Dynamic Architecture of ELM

Dynamic-depth Network Architecture

Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA) Dynamic Architecture of ELM Feature distribution Gap between train and dynamic infer Train exit sequence: 2,2,2,2; 6,6,6,6; ... Infer exit sequence: 1,3,3,5; 6,1,3,6, ...

7

Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA)

- Dynamic Architecture of ELM
- **Dynamic Feature Sampling Training Strategy**

Two Sampling Strategies s1, s2

- s1: uniform sample
- s2: random switch once in a window, e.g., 2,2,4,4; 6,6,6,1

$$\mathcal{L}_{aux} = \sum_{j=1}^{N} \sum_{i=0}^{H-1} \mathcal{L}(a_{t+i}^{j}, a_{t+i})$$
$$\mathcal{L}^{*} = \sum_{s \in \{s_{1}, s_{2}\}} \sum_{i=0}^{H-1} \mathcal{L}(a_{t+i}^{*, s}, a_{t+i})$$
$$\mathcal{L}_{total} = \mathcal{L}^{*} + \mathcal{L}_{aux}$$

- Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA)
 - Dynamic Architecture of ELM
 - **Dynamic Inference for Embodied Tasks**

1. Dynamic Depth Selection Metric for Embodied Tasks: **Action Consistency**

$$\|\pi_{\theta}(\tilde{x}_{t}^{i}, h_{t-1}) - \pi_{\theta}(\tilde{x}_{t}^{i-1}, h_{t-1})\|_{2} < \eta_{i},$$

2. Given Any Computational Cost and Memory, Solve for thresholds for each exit

```
max \operatorname{Scc}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}),
    \eta_1, \eta_2, ...
subject to
  FLOPs(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < B,
```

 $MFLOPs(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < G,$ $\operatorname{Mem}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < M.$

- Dynamic Early-Exit Framework for Robotic VLA Model (DeeR-VLA)
 - How to solve optimal threshold
 - (1) default: Solving problem using a demonstration dataset

 $f_{\text{obj}} = \operatorname{Scc}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) - P_1$

2. Given Any Computational Cost and Memory, Solve for thresholds for each exit

> max $\operatorname{Scc}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}),$ $\eta_1, \eta_2, ...$ subject to

 $\operatorname{FLOPs}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < B,$ $MFLOPs(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < G,$ $\operatorname{Mem}(\mathcal{T}, \{\eta_1, \eta_2, \ldots\}) < M.$

(2) beta: Solving with online interactions (Bayesian Optimization)

CALVIN Long-Horizon Multi-Task Language Control benchmark

<u>5.2-6.4x</u> Computational Efficiency Improvement

≥<u>**2-6x</u> Reduction in Memory**</u>

No Loss in Performance

11

CALVIN Long-Horizon Multi-Task Language Control benchmark

Method	Innut	Data Foundation model		Avg. su	M GFLOPs)	
method	mput	Dutu	I oundation model	$D \rightarrow D$	ABCD→D	ABC→D
GR-1 [74] (ICLR'24)	RGB+ Proprio	LANG	Video-pretrained Transformer	_	4.21	3.06
HULC [13] (RA-L'22)	RGB	ALL	×	2.64	3.06	0.67
RT-1 [15] (RSS'23)	RGB	LANG	×	-	2.45	0.9
SPIL [75] (ICML'24)	RGB	ALL	×	2.67	-	1.71
SuSIE [76] (ICLR'24)	RGB	ALL	InstructPix2Pix [77]	-	-	2.69
RoboFlamingo (ICLR'24)	RGB	LANG	OpenFlamingo 3B	2.46 (31.2)	4.08 (31.2)	2.47 (31.2)
RoboFlamingo++	RGB	LANG	OpenFlamingo 3B	2.71 (31.2)	4.07 (31.2)	2.59 (31.2)
DeeR (ours)	RGB	LANG	OpenFlamingo 3B	2.83 (8.6)	4.13 (10.0)	2.82 (12.5)
DeeR w. online (ours)	RGB	LANG	OpenFlamingo 3B	2.92 (8.5)	4.13 (9.7)	2.90 (9.5)

CALVIN Long-Horizon Multi-Task Language Control benchmark

Enabled Lossless Inference of a <u>9B</u> Embodied Large Model on an <u>8GB GPU</u>

D More

Real inference efficiency: <u>68.1% reduction</u> in LLM inference time

DeeR is compatible with Quantization

Model	Len	GFLOPs	Time
Robo++	4.07	31.2	55ms
DeeR	4.08	6.0	17.5ms

DeeR	Memory	Avg Len
float32	6G	4.13
float16	3G	4.12
int4	1.7G	3.91

Take-away Message

- In MLLMs failed to meet real-time requirements for robot
- There exists redundancy in MLLMs for embodied tasks
- DeeR adjusts MLLM size based on specific situations via early-exit
 - Multi-exit Architecture
 - Action Consistency for Early-Termination
 - > Tailed sampling training strategy
- DeeR significantly reduces computational costs 5.2-6.4x and GPU

memory usage 2x-6x

