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• Seq2Seq Text Generation (S2S-Diffusion models): Generate target sentence from an input sentence

• Current Limitations (Non-contextualized noise scheduling):
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• Key Contributions:

• Introduce Meta-DiffuB to dynamically schedule noise

• Contextualized noise scheduling for better sentence generation

• Plug-and-play scheduler model: Enhances existing models without fine-tuning



Meta-DiffuB: Framework

Scheduler-Exploiter Framework:



Methodology

• Noise Scheduling (Scheduler Model):

• Generates Meta-Instructions for noise adjustment

• Customizes noise schedule based on sentence complexity

• Scheduler adapts noise levels based on exploiter’s learning by Policy Gradient

Encoder

Decoder

Scheduler modelConditional sentence Contextualized noise

Update with the rewards of target sentences using Policy Gradient as shown in Eq. (6).



Methodology

• Training the Exploiter (S2S-Diffusion model):

• S2S-Diffusion model uses scheduled noise for generation
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Diffusion Process Denoising ProcessContextualized Noise

S2S-Diffusion model



Methodology

• Contextualized Inference:

• Dynamic noise scheduling during inference for better text generation

• Adapts to sentence difficulty, improving quality and diversity

Encoder

Decoder

Scheduler model
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Denoising ProcessContextualized noise

S2S-Diffusion model
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Model agnostic experiment
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Plug-and-Play experiment

Encoder

Decoder

Pre-trained scheduler model

......

......

......

Pre-trained S2S-Diffusion models

• Pre-trained scheduler integrated into other models:
• Applied Meta-DiffuB’s pre-trained scheduler to DiffuSeq and other S2S-Diffusion models
• No fine-tuning required
• Improved performance without additional training

Contextualized noise
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• Dynamic noise scheduling for better quality and diversity

• Plug-and-play scheduler for easy integration

• Applications:

• Language Translation
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• Future Impact:

• It is a valuable asset in the field of Seq2Seq Diffusion models.


