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01

Background

 Deep Generative Diffusion Networks

✓ The mainstream denoising backbones: U-Net、Transformer、U-ViT、DiT… (U-shaped / F-shaped)
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02

Background

 Representative Generative Diffusion Models

LLMs LVDMs

✓ The core of generative intelligence emergence: Scaling Law with increasingly deep stacked networks 
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2.1

Motivation

 The essential principle of how the generative denoising network works ？

➢ Core:

The direction of inverted diffusion of the dataThe optimization direction of neural network

Modulation

➢ Issue:

1. Asymmetry (coupling) of network predictions:

2. Training architecture is difficult to scale:

Unbalanced (One Layer)

Unstable (Deep Layers)
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Methods
3.1

 Neural Residual Diffusion Models

➢ Gating-Residual Mechanism

(Discrete Form)

(Continuous Form)

Gating Residual Modulation

(U-shaped)
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Methods
3.2

 Neural Residual Diffusion Models

➢ Denoising Dynamics Parameterization

(Noise-Adding SDE)

(Denoising-ODE) Mean 

Parameterization

Variance

Parameterization
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Methods
3.3

 Neural Residual Diffusion Models

➢ Residual Sensitivity Control

◆ To control the numerical errors in back-propagation and achieve steadily and massively scalable training

◆ We introduce Residual-Sensitivity ODE:

Define Residual-Sensitivity :

Residual-Sensitivity ODE
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Methods
3.3.1

➢ Residual Sensitivity Control

◆ To control the numerical errors in back-propagation and achieve steadily and massively scalable training

◆ First, we define Residual-Sensitivity:

∴

∴

(Chain Rule) (Euler Solver)

∴

∴

Residual-Sensitivity ODE

◆ Then, we further use the Euler solver to obtain the sensitivity          :

(non-negativity) gradually decaying sensitivity !

◆ Similarly, we can define parameter-sensitivity:                    , we can derive:
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Methods
3.3.2

➢ Residual Sensitivity Control

◆ So far, we have explored the current situation of the problem:

Residual-Sensitivity ODE

◆ Subsequently, we apply Gating-Residual and Mean-Variance Parameterization to Residual-Sensitivity ODE :

Rectified Residual-Sensitivity ODE

◆ Eventually, we can supervise it to achieve Residual Sensitivity Control via:

(Rectified Term)
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Experiment
4.1

 Experiments on Image Synthesis with Deep Scalable Spatial Learning

◆ Neural-RDMs have obtained competitive and state-of-

the-art results across image synthesis benchmarking.

◆ Benefiting from the rectification of generative dynamics, 

it highlights the semantics of the subject more.
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Experiment
4.1

 Experiments on Video Generation with Deep Scalable Temporal Learning

◆ Neural-RDMs (flow-shaped version) basically achieves 

the best results, except for the second-best results in 

class-to-video evaluation.

◆ Compare with the baseline, Neural-RDM maintains 

temporal coherence and consistency, resulting in 

smoother and more dynamic video frames.
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Experiment
4.1

 Comparison Experiments of Gating Residual Variants and Deep Scalability

◆ As the number of training steps increases, almost all 

variants can converge effectively, but only Variant-0 

(Our approach) achieves the best FVD scores.

◆ As the depth of residual units increases, the performance 

of the model can be further improved, which further 

highlights the deep scalability advantage of  Neural-RDM.

①

②

③

④

⑤



CONTENTS

01 Background

02 Motivation

03 Methods

04 Experiment

05 Conclusion



Zhiyuan Ma, et al., Neural Residual Diffusion Models for Deep Scalable Vision Generation 19

✓ Propose a unified neural residual diffusion models framework

We practically unify u-shaped and flow-shaped stacking networks and to propose a unified and deep 

scalable neural residual diffusion model framework.

✓ Parameterize the mean-variance scheduler for excellent dynamics consistency

Moreover, we theoretically parameterize the previous human-designed mean-variance scheduler and 

demonstrate excellent dynamics consistency.

✓ Adequate and extensive experiments and analyses

Experimental results on various generative tasks show that Neural-RDM obtains the best results, and 

extensive experiments also demonstrate the advantages in improving the fidelity, consistency of generated 

content and supporting large-scale scalable training.

Conclusion
05
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