BLOB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models

Yibin Wang^{*1}, Haizhou Shi^{*1}, Ligong Han¹², Dimitris N. Metaxas¹, Hao Wang¹

*Equal Contribution

¹Rutgers University ²MIT-IBM Watson AI Lab

NeurIPS 2024

Motivation

Accurately estimating response confidence (or uncertainty) is crucial to trustworthy LLMs.

Motivation

- Accurately estimating response confidence (or uncertainty) is crucial to trustworthy LLMs.
- Bayesian neural networks provide a natural way to estimate uncertainty and calibrate model, especially in a data-limited scenario.

$$\underline{P(\boldsymbol{y}|\boldsymbol{x},\mathcal{D})} = \int P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W}) \underline{P(\boldsymbol{W}|\mathcal{D})} d\boldsymbol{W}$$
posterior distribution

Variational Bayesian Networks approximate the true posterior using a variational distribution.

- However, introducing additional trainable parameters θ is impractical for large models.
- Parameter-Efficient Fine-Tuning (PEFT) can significantly relieve the burden.

Combining Bayesian Neural Networks and PEFT

• Low-Rank Adaptation (LoRA)^[1]

LoRA decomposes each update matrix $\Delta \mathbf{W} \in \mathbf{R}^{m \times n}$ into the product of two low-rank matrices **B** and **A**, where $\mathbf{B} \in \mathbf{R}^{m \times r}$ and $\mathbf{A} \in \mathbf{R}^{r \times n}$. ($r \ll \min\{m, n\}$)

[1] Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." International Conference on Learning Representations.

Combining Bayesian Neural Networks and PEFT

• Bayes By Backprop (BBB)

Bayes By Backprop (BBB)^[2] parameterizes the variational distribution $q(\mathbf{W}|\boldsymbol{\theta})$ as a diagonal Gaussian $\mathcal{N}(\boldsymbol{\mu}, \sigma_q^2)$, and minimizes the following variational free energy:

$$\mathcal{F}(\mathcal{D}, \boldsymbol{\theta}) \approx -\underbrace{\frac{1}{K} \sum_{k=1}^{K} \log P(\mathcal{D} | \boldsymbol{W}_{k})}_{\text{data likelihood}} + \underbrace{\frac{1}{K} \sum_{k=1}^{K} [\log q(\boldsymbol{W}_{k} | \boldsymbol{\theta}) - \log P(\boldsymbol{W}_{k})]}_{\text{equivalent to minimize } \text{KL}[q(\boldsymbol{W} | \boldsymbol{\theta}) \parallel P(\boldsymbol{W})]}$$

[2] Blundell, Charles, et al. "Weight uncertainty in neural network." International conference on machine learning. PMLR, 2015.

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

Asymmetric LoRA Bayesianization

- reduce sampling noise & improve convergence speed
- reduce additional memory cost by 50%
- is equivalent to finding a posterior estimate for the full-weight matrix with a low-rank structure $q(\boldsymbol{A}|\boldsymbol{\theta} = \{\boldsymbol{M}, \boldsymbol{\Omega}\}) = \prod_{ij} \mathcal{N}(A_{ij}|M_{ij}, \Omega_{ij}^2) \qquad q(\operatorname{vec}(\boldsymbol{W})|\boldsymbol{B}, \boldsymbol{\theta}) = \mathcal{N}(\operatorname{vec}(\boldsymbol{W})|\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q)$

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

Asymmetric LoRA Bayesianization: From Posterior to Prior

We assume the prior distribution to be a low-rank Gaussian, with its covariance matrix parameterized by a rank-r' matrix $\widetilde{R} \in \mathbf{R}^{(mn) \times r'}$

$$P(\operatorname{vec}(\boldsymbol{W})) = \mathcal{N}(\operatorname{vec}(\boldsymbol{W}) | \boldsymbol{\mu}_p, \boldsymbol{\Sigma}_p),$$

where $\boldsymbol{\mu}_p = \operatorname{vec}(\boldsymbol{W}_0),$
 $\boldsymbol{\Sigma}_p = \widetilde{\boldsymbol{R}} \widetilde{\boldsymbol{R}}^{\top}.$

Then we can optimize the KL divergence in the low-rank space, with the Gaussian prior distribution $P(\mathbf{A}) = \prod_{ij} \mathcal{N}(A_{ij}|0, \sigma_p^2)$

 $\mathrm{KL}[q(\mathrm{vec}(\boldsymbol{W})|\boldsymbol{B},\boldsymbol{\theta}) \| P(\mathrm{vec}(\boldsymbol{W}))] = \mathrm{KL}[q(\boldsymbol{A}|\boldsymbol{\theta}) \| P(\boldsymbol{A})],$

if $\widetilde{\mathbf{R}} = [\sigma_p \mathbf{I}_n \otimes \mathbf{R}]$, where \mathbf{R} satisfies $\mathbf{R}\mathbf{R}^\top = \mathbf{B}\mathbf{B}^\top$.

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

• BLoB: Final Algorithm

Experimental Result

 $\mathbb{E}_{q(\boldsymbol{W}|\boldsymbol{\theta})}[P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W})] \approx \frac{1}{N} \sum^{N} P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W}_{n}), \quad \boldsymbol{W}_{n} \sim q(\boldsymbol{W}|\boldsymbol{\theta}).$

Metric	Method	Datasets					
		WG-S [82]	ARC-C [18]	ARC-E [18]	WG-M [82]	OBQA 65	BoolQ [17]
ACC (†)	MLE	68.99±0.58	69.10±2.84	85.65±0.92	74.53±0.66	81.52±0.25	86.53±0.28
	MAP	68.62±0.71	67.59 ± 0.40	86.55 ± 0.55	75.61±0.71	81.38 ± 0.65	86.50 ± 0.41
	MCD [29]	69.46 ± 0.62	68.69±1.30	86.21 ± 0.46	76.45 ± 0.04	81.72 ± 0.10	87.29 ± 0.13
	ENS [51, 8, 103]	69.57 ± 0.66	66.20 ± 2.01	84.40 ± 0.81	75.32 ± 0.21	81.38 ± 0.91	87.09 ± 0.11
	BBB [11]	56.54±7.87	68.13±1.27	85.86 ± 0.74	73.63 ± 2.44	82.06±0.59	87.21 ± 0.22
	LAP [116]	69.20 ± 1.50	66.78 ± 0.69^{1}	$80.05{\scriptstyle\pm0.22}$	75.55 ± 0.36	82.12 ± 0.67	86.95 ± 0.09
	BLoB (N=0)	70.89±0.82	70.83±1.57	86.68±0.60	74.55 ± 1.94	82.73±0.41	86.80±0.23
	BLoB (N=5)	66.30 ± 0.62	67.34±1.15	84.74 ± 0.33	72.89±1.25	81.79±0.94	86.47 ± 0.15
	BLoB (N=10)	69.07 ± 0.34	68.81 ± 1.09	85.56 ± 0.35	73.69 ± 0.17	81.52 ± 0.74	$\underline{86.99 \pm 0.24}$
ECE (↓)	MLE	29.83±0.58	29.00±1.97	13.12±1.39	20.62±0.74	12.55 ± 0.46	3.18±0.09
	MAP	29.76±0.87	29.42 ± 0.68	12.07 ± 0.55	23.07 ± 0.14	13.26 ± 0.82	3.16±0.23
	MCD [29]	27.98 ± 0.44	27.53 ± 0.80	12.20 ± 0.56	19.55 ± 0.47	13.10 ± 0.11	3.46 ± 0.16
	ENS [51, 8, 103]	28.52 ± 0.55	29.16 ± 2.37	12.57 ± 0.58	20.86 ± 0.43	15.34 ± 0.27	9.61±0.24
	BBB [11]	21.81 ± 12.95	26.23 ± 1.47	12.28 ± 0.58	15.76 ± 4.71	11.38 ± 1.07	3.74 ± 0.10
	LAP [116]	4.15 ± 1.12	16.25 ± 2.61^{11}	33.29 ± 0.57	7.40 ± 0.27	8.70 ± 1.77	1.30 ± 0.33
	BLoB (N=0)	20.62 ± 0.83	20.61 ± 1.16	9.43±0.38	11.23±0.69	8.36±0.38	2.46±0.07
	BLoB (N=5)	10.89 ± 0.83	11.22 ± 0.35	6.16±0.23	4.51±0.35	3.40±0.57	1.63 ± 0.35
	BLoB (N=10)	9.35 ± 1.37	9.59±1.88	3.64±0.53	3.01±0.12	3.77 ± 1.47	1.41 ± 0.19
NLL (↓)	MLE	3.17±0.37	2.85 ± 0.27	1.17 ± 0.13	0.95 ± 0.07	0.73 ± 0.03	0.32 ± 0.00
	MAP	2.46 ± 0.34	2.66 ± 0.11	0.90 ± 0.05	1.62 ± 0.29	0.75 ± 0.01	0.33 ± 0.00
	MCD [29]	2.79 ± 0.53	2.67 ± 0.15	1.00 ± 0.14	1.02 ± 0.03	0.77 ± 0.03	0.31 ± 0.00
	ENS [51, 8, 103]	2.71 ± 0.08	2.46 ± 0.22	0.82 ± 0.03	1.25 ± 0.03	1.06 ± 0.04	0.57 ± 0.02
	BBB [11]	1.40 ± 0.55	2.23 ± 0.04	0.91 ± 0.06	0.84 ± 0.15	0.66 ± 0.05	0.31 ± 0.00
	LAP [116]	0.60±0.00	1.03 ± 0.04^{1}	0.88 ± 0.00	0.57 ± 0.01	0.52 ± 0.01	0.31 ± 0.00
	BLoB (N=0)	0.91±0.10	1.19±0.02	0.56±0.01	0.60±0.01	0.56±0.02	0.32±0.00
	BLoB (N=5)	0.68 ± 0.01	0.90 ± 0.01	0.46 ± 0.02	0.56 ± 0.01	0.53 ± 0.01	0.32 ± 0.00
	BLoB (N=10)	0.63 ± 0.01	0.78 ± 0.02	0.40 ± 0.01	0.54 ± 0.00	0.50±0.01	0.31 ± 0.00

N = 10

• best uncertainty estimation performance

N = 0

• only use the mean of variational distribution

• best accuracy at the expense of calibration