KBLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models

Yibin Wang^{*1}, Haizhou Shi^{*1}, [Ligong Han](https://openreview.net/profile?id=%7ELigong_Han1)¹², Dimitris N. Metaxas¹, [Hao Wang](https://openreview.net/profile?id=%7EHao_Wang3)¹

*Equal Contribution

1Rutgers University 2MIT-IBM Watson AI Lab

NeurIPS 2024

Motivation

Accurately estimating response confidence (or uncertainty) is crucial to trustworthy LLMs.

Motivation

- Accurately estimating response confidence (or uncertainty) is crucial to trustworthy LLMs.
- Bayesian neural networks provide a natural way to estimate uncertainty and calibrate model, especially in a data-limited scenario.

$$
\underset{\text{predictive uncertainty}}{P(\boldsymbol{y}|\boldsymbol{x}, \mathcal{D})} = \int P(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{W}) \underset{\text{posterior distribution}}{P(\boldsymbol{W}|\mathcal{D})} d\boldsymbol{W}
$$

Variational Bayesian Networks approximate the true posterior using a variational distribution.

However, introducing additional trainable parameters θ is impractical for large models.

Parameter-Efficient Fine-Tuning (PEFT) can significantly relieve the burden.

Combining Bayesian Neural Networks and PEFT

Low-Rank Adaptation (LoRA)^[1]

LoRA decomposes each update matrix ∆**W** ∈ **R***m×n* into the product of two low-rank matrices **B** and **A**, where **B** \in **R**^{*m*×*r*} and **A** \in **R**^{*r*×*n*}. (*r* ≪ $min{m, n}$)

[1] Hu, Edward J., et al. "LoRA: Low-Rank Adaptation of Large Language Models." *International Conference on Learning Representations*.

Combining Bayesian Neural Networks and PEFT

● **Bayes By Backprop (BBB)**

Bayes By Backprop (BBB)[2] parameterizes the variational distribution *q*(**W**|*θ*) as a diagonal Gaussian $\mathcal{N}(\mu, \sigma_q^2)$, and minimizes the following variational free energy:

$$
\mathcal{F}(\mathcal{D}, \theta) \approx -\frac{1}{K} \sum_{k=1}^{K} \log P(\mathcal{D}|\boldsymbol{W}_k) + \frac{1}{K} \sum_{k=1}^{K} [\log q(\boldsymbol{W}_k|\boldsymbol{\theta}) - \log P(\boldsymbol{W}_k)],
$$
\n
$$
\text{data likelihood} \qquad \text{equivalent to minimize } \text{KL}[q(\boldsymbol{W}|\boldsymbol{\theta}) \parallel P(\boldsymbol{W})]
$$

[2] Blundell, Charles, et al. "Weight uncertainty in neural network." *International conference on machine learning*. PMLR, 2015.

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

● **Asymmetric LoRA Bayesianization**

- reduce sampling noise & improve convergence speed
- reduce additional memory cost by 50%
- is equivalent to finding a posterior estimate for the full-weight matrix with a low-rank structure

 $q(\mathbf{A}|\boldsymbol{\theta} = {\bf{M}, \Omega}) = \prod_{ij} \mathcal{N}(A_{ij}|M_{ij}, \Omega_{ij}^2)$ $q(\text{vec}(\mathbf{W})|\mathbf{B}, \boldsymbol{\theta}) = \mathcal{N}(\text{vec}(\mathbf{W})|\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q)$

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

● **Asymmetric LoRA Bayesianization: From Posterior to Prior**

We assume the prior distribution to be a low-rank Gaussian, with its covariance matrix parameterized by a rank-r' matrix $\widetilde{R} \in \mathbb{R}^{(\text{mn}) \times r'}$

$$
P(\text{vec}(\boldsymbol{W})) = \mathcal{N}(\text{vec}(\boldsymbol{W})|\boldsymbol{\mu}_p, \boldsymbol{\Sigma}_p),
$$

where $\boldsymbol{\mu}_p = \text{vec}(\boldsymbol{W}_0),$
 $\boldsymbol{\Sigma}_p = \widetilde{\boldsymbol{R}} \widetilde{\boldsymbol{R}}^{\top}.$

Then we can optimize the KL divergence in the low-rank space, with the Gaussian prior distribution $P(A) = \prod_{ij} \mathcal{N}(A_{ij}|0, \sigma_p^2)$

$$
\text{KL}[q(\text{vec}(\boldsymbol{W})|\boldsymbol{B},\boldsymbol{\theta})||P(\text{vec}(\boldsymbol{W}))] = \text{KL}[q(\boldsymbol{A}|\boldsymbol{\theta})||P(\boldsymbol{A})],
$$

if $\widetilde{\bm{R}} = [\sigma_p \bm{I}_n \otimes \bm{R}]$, where **R** satisfies $\bm{R} \bm{R}^{\top} = \bm{B} \bm{B}^{\top}$.

Bayesian Low-Rank Adaptation by Backpropagation (BLoB)

BLoB: Final Algorithm

Experimental Result

 $\mathbb{E}_{q(\boldsymbol{W}|\boldsymbol{\theta})}[P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W})] \approx \frac{1}{N} \sum_{i=1}^{N} P(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{W}_n), \quad \boldsymbol{W}_n \sim q(\boldsymbol{W}|\boldsymbol{\theta}).$

 $N = 10$

• best uncertainty estimation performance

 $N = 0$

• only use the mean of variational distribution

• best accuracy at the expense of calibration