Robust Offline Active Learning on Graphs

Yuanchen Wu, Yubai Yuan

Department of Statistics, The Pennsylvania State University

Summary

- We propose an active learning on graphs framework for node-level prediction
- Introduce informativeness and representativeness criteria for node querying
- robust to both node feature and labeling noise
- theoretical guarantee on prediction performance under mild assumption

Background

Active Learning: prioritize informative nodes for labeling

Graph signal space: node feature + network information

 $\mathbf{H}_{\omega}(\mathbf{X}, \mathbf{A}) = \operatorname{Proj}_{\mathbf{L}_{\omega}} \operatorname{Span}(\mathbf{X}) := \operatorname{Span}\{\operatorname{Proj}_{\mathbf{L}_{\omega}} X_1, \cdots, \operatorname{Proj}_{\mathbf{L}_{\omega}} X_p\},\$ $\sum \langle X_i, U_j \rangle U_j.$ where $\operatorname{Proj}_{\mathbf{L}} X$

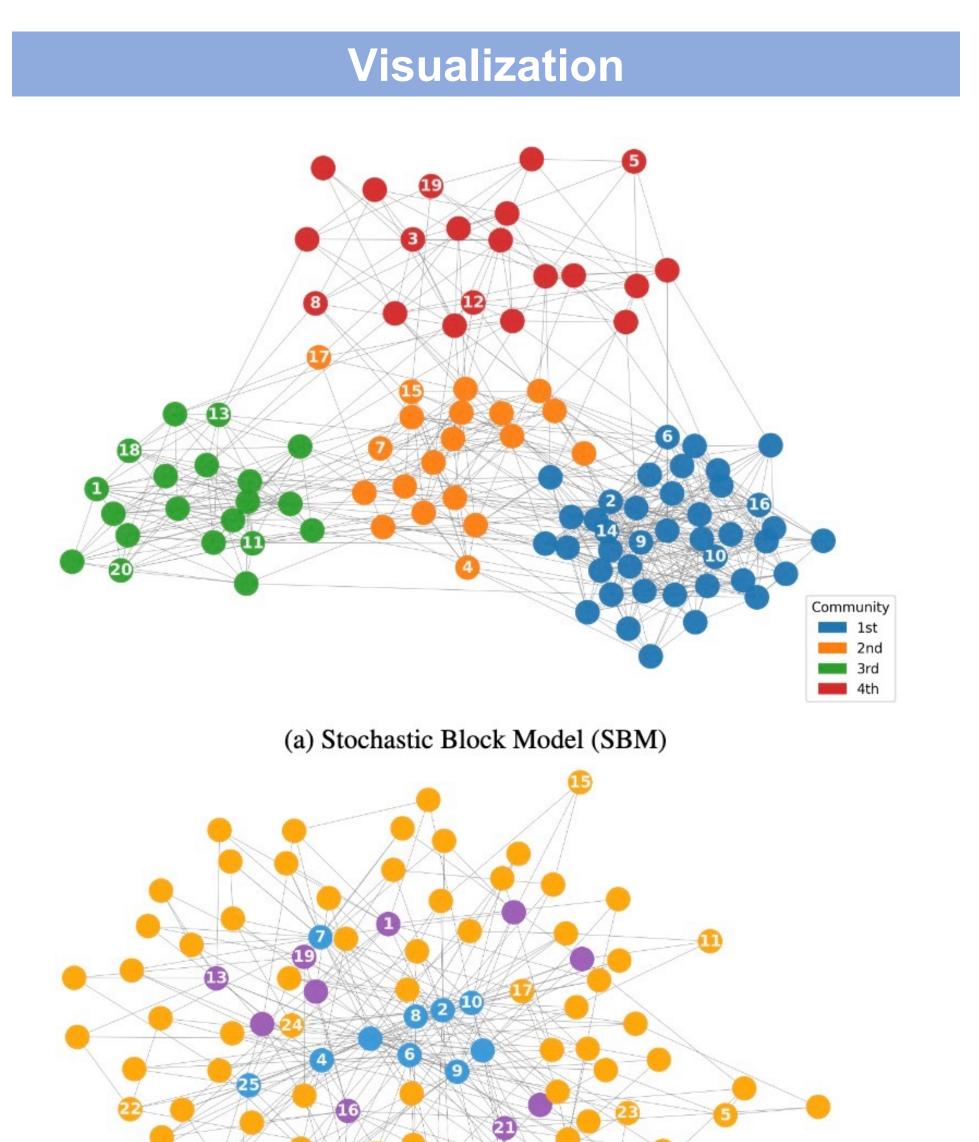
$$X_i = \sum_{j:\lambda_j \le \omega} \langle X_i \rangle$$

Informativeness

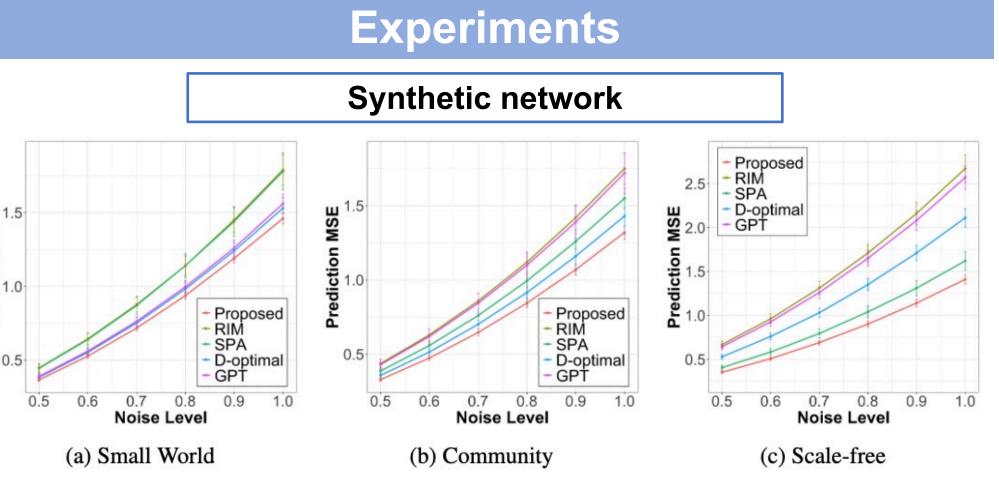
- **Information gain of labeling |S|:** the maximum recoverable dimension of the subspace by labeling |S|
- Select nodes to maximize information gain using graph signal recovery theory

Representativeness

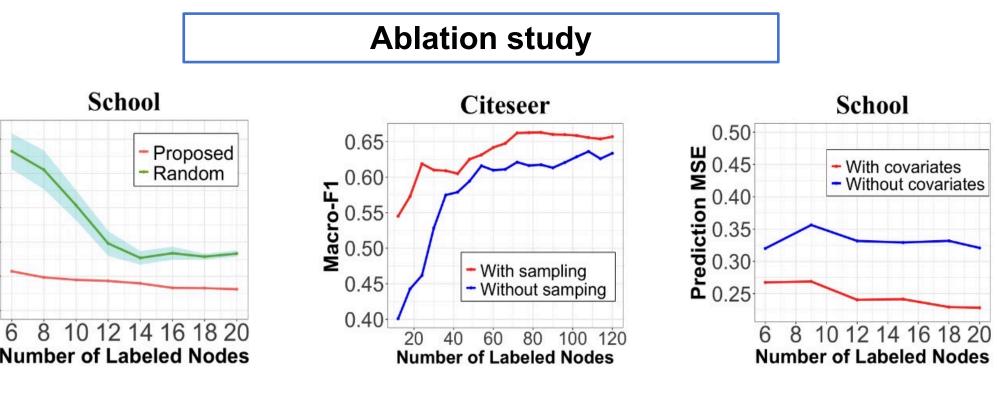
- **Representative sampling** to control generalization error due to labeling noise
- Tool: graph sparsification


Ultimate bias-variance tradeoff: Informativeness vs robustness

 $\mathbf{E}_{Y}\|\hat{\mathbf{f}} - \mathbf{f}\|_{2}^{2} \leq \mathcal{O}\Big(\frac{r_{d}t}{\mathcal{B}} + 2(\frac{r_{d}t}{\mathcal{B}})^{3/2} + (\frac{r_{d}t}{\mathcal{B}})^{2}\Big) \times (n\sigma^{2} + \sum_{i > d, i \in supp(\mathbf{f})} \alpha_{i}^{2}) + \sum_{i > d, i \in supp(\mathbf{f})} \alpha_{i}^{2} + \sum_{i \in sup(\mathbf{f})} \alpha_{i}^{2} + \sum_{i \in sup(\mathbf{f})} \alpha_{i}^{2} + \sum_{i \in sup$


Algorithm

- Initialize $S = \emptyset$, \mathcal{B} =query budget
- While $|S| \leq \mathcal{B}$:
 - Sample *m* nodes as candidate sets based on **representative** sampling
 - From 1, choose the node *i* that maximizes **information gain**
 - Update $S = S \cup i$
- Label all nodes in S


Medium Low

Real network

	$\mathbf{Cora} (h=0.81)$			Chameleon $(h = 0.23)$			Texas $(h = 0.11)$		
# Labeled Nodes	35	70	140	50	75	100	15	30	45
Random	68.2 ± 1.3	74.5 ± 1.0	78.9 ± 0.9	22.4 ± 2.6	22.1 ± 2.5	21.8 ± 2.1	67.0 ± 3.3	69.9 ± 3.3	73.8 ± 3.2
AGE	72.1 ± 1.1	78.0 ± 0.9	82.5 ± 0.5	30.0 ± 4.5	28.2 ± 4.9	28.6 ± 5.0	67.9 ± 2.6	68.8 ± 3.3	72.1 ± 3.6
GPT	77.4 ± 1.6	81.6 ± 1.2	$\textbf{86.5} \pm 1.2$	14.1 ± 2.5	15.8 ± 2.2	16.4 ± 2.4	72.6 ± 2.0	72.5 ± 3.6	74.6 ± 1.8
RIM	77.5 ± 0.8	81.6 ± 1.1	84.1 ± 0.8	$\textbf{35.5}\pm3.7$	$\textbf{42.8} \pm 3.0$	34.4 ± 3.5	68.5 ± 3.7	78.4 ± 3.0	74.6 ± 3.7
IGP	77.4 ± 1.7	81.7 ± 1.6	86.3 ± 0.7	32.5 ± 3.6	33.7 ± 3.1	33.4 ± 3.5	70.8 ± 3.7	69.9 ± 3.3	76.1 ± 3.6
SPA	76.5 ± 1.9	80.3 ± 1.6	85.2 ± 0.6	30.2 ± 3.2	28.5 ± 2.9	31.0 ± 4.4	72.0 ± 3.2	72.5 ± 3.1	74.6 ± 2.1
Proposed	$\textbf{78.4} \pm 1.7$	$\textbf{81.8} \pm 1.8$	$\textbf{86.5} \pm 1.1$	35.1 ± 2.8	35.7 ± 3.0	$\textbf{37.2}\pm3.0$	$\textbf{75.0} \pm 1.9$	$\textbf{79.5}\pm0.8$	$\textbf{80.4} \pm 2.7$

Limitation & Future work

- Limitation: over-reliance on a priori knowledge of label construction
- Future direction: adaptive methods for designing the signal subspace to effectively handle both homophily and heterophily
- Extension to an **online** active learning setting that iteratively incorporates node response information to further enhance query efficiency