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● Trustworthiness of LLMs

○ Applications in safety-critical domains

○ Unpredictable hallucinations/misinformation

○ Lack of uncertainty/confidence indicator
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● Existing Solutions

○ Extending traditional UQ methods to LLMs
■ Only work for classification tasks

○ Train additional uncertainty/confidence predictors
■ Not “off-the-shelf”, need extra data/training 

○ Lexical uncertainty/confidence metrics
■ Ignoring semantic information

○ Semantic Entropy
■ Prompt-wise
■ No fine-grained semantic analysis

Motivation
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● Semantic Density

○ Measuring confidence for each response

○ Analyzing output distribution in semantic space

○ Main advantages:
■ Response-wise indicator
■ Considering fine-grained semantic relationships
■ “Off-the-shelf”: 

● directly applicable to pre-trained LLMs
● no fine-tuning/re-training

■ Work for free-form generation tasks

Proposed Solution
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● Semantic Density

Proposed Solution
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● Semantic Density

Proposed Solution Step 2: Semantic Relationship Analysis
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● Semantic Density

Proposed Solution Step 3: Kernel Calculation
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● Semantic Density

Proposed Solution Step 4: Semantic Density Calc.
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● Semantic Space
○ Oracle/idealized form:

■ Contextual embedding:
■ Fixed norm:  
■ Reflecting semantic relationship:

Semantic Density
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● Semantic
○ Implicit form via NLI model

■ Natural Language Inference (NLI) Model:
● Classifier for semantic relationships

■ Estimating the expectation of                   : 

Semantic Density
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● Kernel Function Calculation
○ Traditional Epanechnikov kernel in standard KDE:

○ Dimension-invariant kernel in semantic density:

■ Does not work for standard KDE
■ Fits well in confidence/uncertainty estimation

● Making confidence scores comparable for embedding spaces with 
different dimensionalities

Semantic Density
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● Semantic Density Calculation
○ Expensive extension from standard KDE:

○ Cost-effective realization in semantic density:

Semantic Density
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● Indicator for correctness of responses

○ Area under the receiver operating characteristic curve (AUROC):

Empirical Evaluations
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● Sensitivity to number of reference responses:

● Robust to reduced number of reference samples

Empirical Evaluations
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● Performance changes for responses from different sampling strategies:

● Robust for both greedy or diverse samplings

Empirical Evaluations
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● Conclusions
○ Proposed semantic density as a confidence indicator for LLM responses

○ Response-wise, off-the-shelf for free-form generation tasks

● Future work
○ Improving sampling strategy for reference responses

○ Developing contextual embedding model

○ Dedicated kernel function

○ Better token probability calibration

● Source code and contact
○ https://github.com/cognizant-ai-labs/semantic-density-paper

○ qiuxin.nju@gmail.com, risto@cs.utexas.edu 

Summary
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