

Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space

> Xin Qiu¹, Risto Miikkulainen^{1,2} ¹Cognizant Al Labs, ²The University of Texas at Austin Neurips 2024

Motivation

- Trustworthiness of LLMs
 - Applications in safety-critical domains
 - Unpredictable hallucinations/misinformation
 - Lack of uncertainty/confidence indicator

Motivation

• Existing Solutions

- Extending traditional UQ methods to LLMs
 - Only work for classification tasks
- Train additional uncertainty/confidence predictors
 - Not "off-the-shelf", need extra data/training
- Lexical uncertainty/confidence metrics
 - Ignoring semantic information
- Semantic Entropy
 - Prompt-wise
 - No fine-grained semantic analysis

Proposed Solution

Semantic Density

- Measuring confidence for each response
- Analyzing output distribution in semantic space

• Main advantages:

- Response-wise indicator
- Considering fine-grained semantic relationships
- "Off-the-shelf":
 - directly applicable to pre-trained LLMs
 - no fine-tuning/re-training
- Work for free-form generation tasks

Proposed Solution

• Semantic Density

Cognizant

Cognizant

- Semantic Space
 - Oracle/idealized form: Ο

 - Contextual embedding: v = E(y|x)Fixed norm: $||v|| = \frac{1}{2}$, for v = E(y|x), $\forall x, y$
 - **Reflecting semantic relationship:**

 $||\boldsymbol{v}_i - \boldsymbol{v}_j|| = \begin{cases} 0, \text{ if } \boldsymbol{y}_i \text{ and } \boldsymbol{y}_j \text{ are semantically equivalent given context } \boldsymbol{x} \\ rac{\sqrt{2}}{2}, \text{ if } \boldsymbol{y}_i \text{ and } \boldsymbol{y}_j \text{ are semantically irrelevant given context } \boldsymbol{x} \\ 1, \text{ if } \boldsymbol{y}_i \text{ and } \boldsymbol{y}_j \text{ are semantically contradictory given context } \boldsymbol{x} \end{cases}$

 $||\boldsymbol{v}_i - \boldsymbol{v}_i|| < ||\boldsymbol{v}_i - \boldsymbol{v}_k||$, if \boldsymbol{y}_i is semantically closer to \boldsymbol{y}_j than to \boldsymbol{y}_k , given context \boldsymbol{x}_i

- Semantic
 - Implicit form via NLI model
 - Natural Language Inference (NLI) Model:
 - Classifier for semantic relationships
 - Estimating the expectation of $||v_* v_i||$:

- Kernel Function Calculation
 - Traditional Epanechnikov kernel in standard KDE:

$$\overrightarrow{\textbf{Dependent}} \quad \overrightarrow{K(\boldsymbol{v})} = \frac{\Gamma(2 + \frac{D}{2})}{\pi^{\frac{D}{2}}} (1 - ||\boldsymbol{v}||^2) \mathbf{1}_{||\boldsymbol{v}|| \leq 1}$$

• Dimension-invariant kernel in semantic density:

$$K(v_* - v_i) = (1 - ||v_* - v_i||^2) \mathbf{1}_{||v_* - v_i|| \le 1}$$

- Does not work for standard KDE
- Fits well in confidence/uncertainty estimation
 - Making confidence scores comparable for embedding spaces with different dimensionalities

- Semantic Density Calculation
 - Expensive extension from standard KDE:

$$\hat{p}(\boldsymbol{y}_*|\boldsymbol{x}) = \sum_{i=1}^{M} f_i K(\boldsymbol{v}_* - \boldsymbol{v}_i) = \frac{1}{\sum_{i=1}^{M} n_i} \sum_{i=1}^{M} n_i K(\boldsymbol{v}_* - \boldsymbol{v}_i) \text{ Number of Occurrences}$$

• Cost-effective realization in semantic density:

$$SD(\boldsymbol{y}_{*}|\boldsymbol{x}) = \underbrace{\frac{1}{\sum_{i=1}^{M} p(\boldsymbol{y}_{i}|\boldsymbol{x})} \sum_{i=1}^{M} p(\boldsymbol{y}_{i}|\boldsymbol{x})}_{i=1} K(\boldsymbol{v}_{*} - \boldsymbol{v}_{i})}_{\substack{\text{Length-normalization} \\ \text{+ Temperature Scaling}}}$$

- Indicator for correctness of responses
 - Area under the receiver operating characteristic curve (AUROC):

AUROC	SD	SE[22]	P(True)[21]	Deg[26]	NL[31]	NE[29]	PE[21]
Llama-2-13B	0.783	0.633	0.594	0.734	0.709	0.629	0.647
Llama-2-70B	0.783	0.621	0.576	0.721	0.716	0.617	0.647
Llama-3-8B	0.738	0.599	0.593	0.795	0.676	0.608	0.604
Llama-3-70B	0.789	0.608	0.670	0.729	0.698	0.587	0.641
Mistral-7B	0.788	0.627	0.667	0.737	0.704	0.614	0.632
Mixtral-8x7B	0.786	0.626	0.589	0.728	0.708	0.617	0.651
Mixtral-8x22B	0.791	0.614	0.614	0.726	0.700	0.604	0.649

- Indicator for correctness of responses
 - Area under the receiver operating characteristic curve (AUROC):

	TriviaQA						
AUROC	SD	SE	P(True)	Deg	NL	NE	PE
Llama-2-13B	0.848	0.672	0.589	0.824	0.675	0.574	0.556
Llama-2-70B	0.829	0.677	0.556	0.787	0.714	0.582	0.566
Llama-3-8B	0.866	0.662	0.647	0.796	0.834	0.636	0.622
Llama-3-70B	0.828	0.663	0.654	0.764	0.828	0.611	0.596
Mistral-7B	0.866	0.690	0.589	0.828	0.745	0.615	0.536
Mixtral-8x7B	0.846	0.685	0.562	0.797	0.795	0.644	0.605
Mixtral-8x22B	0.829	0.686	0.604	0.762	0.801	0.644	0.607

Cognizant

- Indicator for correctness of responses
 - Area under the receiver operating characteristic curve (AUROC):

SciQ							
AUROC	SD	SE	P(True)	Deg	NL	NE	PE
Llama-2-13B	0.757	0.570	0.572	0.727	0.693	0.513	0.574
Llama-2-70B	0.746	0.643	0.584	0.713	0.637	0.554	0.615
Llama-3-8B	0.780	0.611	0.564	0.731	0.686	0.597	0.651
Llama-3-70B	0.771	0.613	0.556	0.706	0.724	0.558	0.520
Mistral-7B	0.771	0.618	0.568	0.736	0.669	0.565	0.528
Mixtral-8x7B	0.773	0.612	0.585	0.716	0.726	0.612	0.658
Mixtral-8x22B	0.775	0.620	0.602	0.719	0.715	0.602	0.628

- Indicator for correctness of responses
 - Area under the receiver operating characteristic curve (AUROC):

AUROC	SD	SE	P(True)	Deg	NL	NE	PE
Llama-2-13B	0.689	0.581	0.592	0.686	0.588	0.571	0.640
Llama-2-70B	0.676	0.545	0.531	0.691	0.567	0.573	0.620
Llama-3-8B	0.710	0.583	0.517	0.706	0.601	0.603	0.615
Llama-3-70B	0.723	0.577	0.643	0.714	0.631	0.603	0.615
Mistral-7B	0.680	0.597	0.523	0.676	0.640	0.635	0.631
Mixtral-8x7B	0.729	0.599	0.576	0.720	0.654	0.603	0.608
Mixtral-8x22B	0.709	0.577	0.504	0.704	0.638	0.625	0.680

• Sensitivity to number of reference responses:

Robust to reduced number of reference samples

• Performance changes for responses from different sampling strategies:

• Robust for both greedy or diverse samplings

Summary

• Conclusions

- Proposed semantic density as a confidence indicator for LLM responses
- Response-wise, off-the-shelf for free-form generation tasks

• Future work

- Improving sampling strategy for reference responses
- Developing contextual embedding model
- Dedicated kernel function
- Better token probability calibration
- Source code and contact
 - <u>https://github.com/cognizant-ai-labs/semantic-density-paper</u>
 - o <u>qiuxin.nju@gmail.com</u>, <u>risto@cs.utexas.edu</u>

Thank You

