Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits

Summary

NEF with subexponential tail enjoys a good statistical and optimization property, self-concordance (SC). Applications include bandits, supervised learning, etc...

- (a) With unsophisticated analysis: $R(T) \approx \kappa \sqrt{T}$
- (b) With SC on logistic bandits: $R(T) \approx \sqrt{T/\kappa} + \kappa$
- (C) $\kappa = \frac{1}{\inf_{x \in \mathcal{X}} \dot{\mu}(x^{\top} \theta_{\star})}$

Background: NEF and GLB

NEF:

- (a) Fix a base distribution Q over the reals
- (b) $Q_u(dy) = \frac{\exp(uy)Q(dy)}{M_Q(u)}$ with u such that $M_Q(u) := \int_{\mathbb{R}} \exp(uy)Q(dy) < \infty$ (c) $\mu(u) = \int y Q_u(dy), \ \frac{d^n}{du^n} \mu(u) = \int (y - \mu(u))^{n+1} Q_u(dy) \text{ for } n \in \{1, 2\}$

$$\mathsf{GLB:} \ u_x = x^\top \theta_\star$$

Neural Information Processing Systems

Shuai Liu¹

Alex Ayoub¹

¹University of Alberta ²HEC Paris

Self-concordance Property

For a thrice-differentiable real-valued function $\mu : D \to \mathbb{R}$, there exists a function $\Gamma: D \to \mathbb{R}_{>0}$ such that

 $|\ddot{\mu}(u)| \leq \Gamma(u)\dot{\mu}(u)$

for all $u \in D$. It allows us to control the ratio between the derivatives:

$$\begin{split} \dot{\mu}(u') \exp(-R|u-u'|) &\leq \dot{\mu}(u) \leq \dot{\mu}(u') \exp(R|u-u'|) \\ \frac{\dot{\mu}(u)}{1+R|u-u'|} &\leq \int_0^1 \dot{\mu}(u+t(u'-u))dt = \frac{\mu(u)-\mu(u')}{u-u'} \\ \end{split}$$
 where $R = \sup_{x \in D} \Gamma(x).$

Research Question

The analysis of LogBs suggests that we are able to get rid of κ in the first-order term for GLBs whose corresponding NEF has a self-concordant mean function.

Question: How large is the class of NEF with self-concordant mean functions?

Short Answer: Upper Bounds

Main Theorem:

If an NEF has a subexponential base distribution, then there exists a polynomial function $\Gamma(\cdot)$ such that the mean function $\mu(\cdot)$ is Γ self-concordant.

Flore Sentenac² Xiaoqi Tan¹ Csaba Szepesvári¹

$$\iota)$$

This gives a more sophisticated way of constructing the confidence set using local curvature of $\mu(\cdot)$ which avoids paying κ in the first order term of the regret bound.

 $\Gamma(u)$ s.t.:

 $\Gamma(u)$

Subexponential base Q: Taking Q to be Exp(c), we have: $\Gamma(u) \ge \left(\frac{1}{c-u}\right)$. **Subgaussian base** Q: UB is order tight for a certain base distribution Q:

- Q constructed so that $Q_{2^i} \approx \operatorname{cst} + 2^i \mathcal{B}(p)$.

- Can we find tight bounds for subexponential NEF?
- Can we extend beyond NEF?

Upper Bounds

Subexponential base Q: NEF $(Q_u)_{u \in [-c;c]}$ is self-concordant with function

$$) = O\left(\frac{1}{(c-|u|)^2}\right).$$

Subgaussian base Q: NEF $(Q_u)_{u \in \mathbb{R}}$ is self-concordant with function $\Gamma(u)$ s.t.: $\Gamma(u) = O\left(|u|\right).$

Lower Bounds

• If $X \sim M\mathcal{B}(p)$, with $0 , then <math>\frac{\mathbb{E}[(X - \mathbb{E}[X])^3]}{\mathbb{E}[(X - \mathbb{E}[X])^2]} = O(M)$.

Open Questions