# Noise Contrastive Alignment of Language Models with Explicit Rewards

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, Jun Zhu

### Tsinghua University



# We propose a general LLM alignment framework that can:

- 1) Address the chosen likelihood decrease problem of DPO.
- 2) Handle alignment dataset labeled by scalar rewards.
- 3) Unifies contrastive learning (NCE) and LLM alignment theories.
- 4) Subsumes **DPO** as a special case of InfoNCE-based methods.

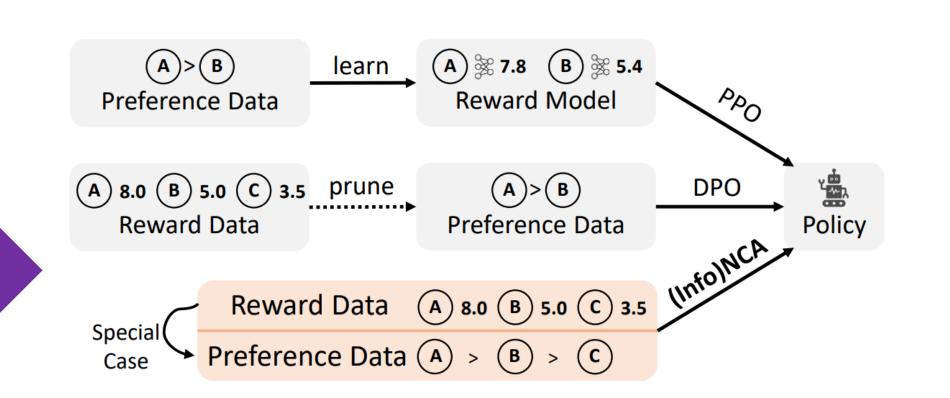


Figure 1: InfoNCA/NCA allows direct LM optimization for both reward and preference data.

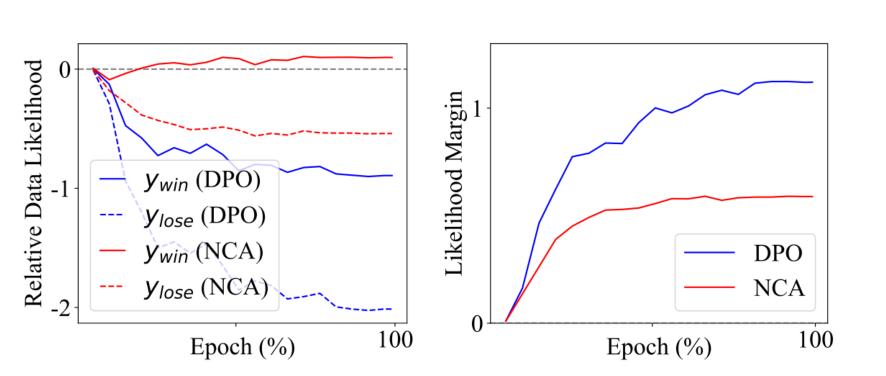
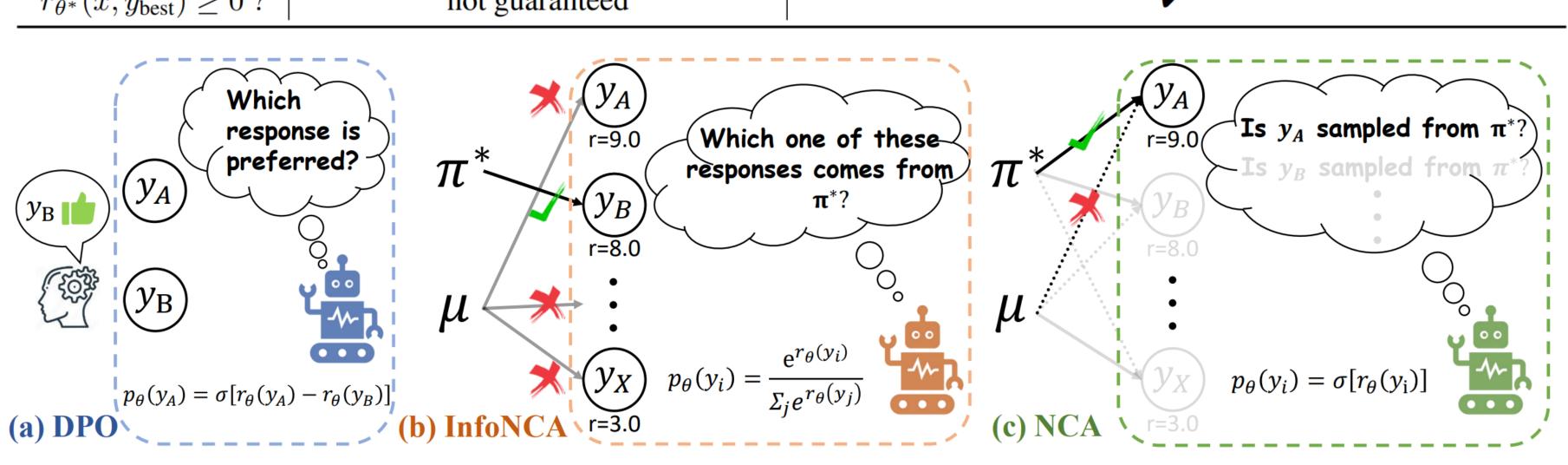


Figure 2: Pairwise NCA prevents chosen likelihood from decreasing while DPO cannot.

## Method: InfoNCA and NCA methods for both reward&preference alignment.

| Alignment Method                           | InfoNCA (Sec. 3)                                                                                                                                  | NCA (Sec. 4)                                                                                                                                                   |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Modeling Target                            | $\pi^*(y x) \propto \mu(y x)e^{r(x,y)/\alpha}$                                                                                                    |                                                                                                                                                                |  |  |  |  |
| Model Definition                           | $\pi_{\theta}(y x) \propto \mu(y x)e^{r_{\theta}(x,y)}$                                                                                           | $\pi_{\theta}(y x) = \mu(y x)e^{r_{\theta}(x,y)}$                                                                                                              |  |  |  |  |
| Reward Dataset                             | $x \to \{y$                                                                                                                                       | $\{r_i,r_i\}_{1:K}$                                                                                                                                            |  |  |  |  |
| Loss ( $K>1, \alpha>0$ )                   | $-\sum_{i=1}^{K} \left[ \frac{e^{r_i/\alpha}}{\sum_{j} e^{r_j/\alpha}} \log \frac{e^{r_{\theta}(x,y_i)}}{\sum_{j} e^{r_{\theta}(x,y_j)}} \right]$ | $-\sum_{i=1}^{K} \left[ \frac{e^{r_i/\alpha}}{\sum_{j} e^{r_j/\alpha}} \log \sigma(r_{\theta}(x, y_i)) + \frac{1}{K} \log \sigma(-r_{\theta}(x, y_i)) \right]$ |  |  |  |  |
| Preference Dataset                         | $x \to \{y_w > y_l\}$                                                                                                                             |                                                                                                                                                                |  |  |  |  |
| Loss ( $K$ =2, $\alpha$ $\rightarrow$ 0)   | $-\log \sigma(r_{\theta}(x,y_w) - r_{\theta}(x,y_l))$ (DPO)                                                                                       | $-\log \sigma(r_{\theta}(x, y_w)) - \frac{1}{2} \sum_{y \in \{y_w, y_l\}} \log \sigma(-r_{\theta}(x, y))$                                                      |  |  |  |  |
| Loss Type                                  | InfoNCE loss [24]                                                                                                                                 | NCE loss [14]                                                                                                                                                  |  |  |  |  |
| <b>Optimizing Target</b>                   | relative value of log likelihood ratio                                                                                                            | absolute value of log likelihood ratio                                                                                                                         |  |  |  |  |
| Optimal $r_{\theta^*}(x,y)$                | $r(x,y)/\alpha + C(x)$                                                                                                                            | $r(x,y)/\alpha - \log \mathbb{E}_{\mu(y x)} e^{r(x,y)/\alpha}$                                                                                                 |  |  |  |  |
| $r_{\theta^*}(x, y_{\text{best}}) \ge 0$ ? | not guaranteed                                                                                                                                    |                                                                                                                                                                |  |  |  |  |



# Experimental Findings:

## 1) Reward information is helpful and useful. Do not throw them away!

|          | Name                    | <b>Annotation Type</b> | MT-bench | AlpacaEval | Win vs. DPO |
|----------|-------------------------|------------------------|----------|------------|-------------|
|          | Mixtral-7B-sft          | SFT Data               | 6.45     | 85.20      | -           |
| e        | +KTO [11]               | Preference             | 7.12     | 91.93      | -           |
| Baseline | +IPO [1]                | Preference             | 7.45     | 90.62      | -           |
| ase      | +DPO (Zephyr- $\beta$ ) | Preference             | 7.34     | 90.60      | 50.0        |
| B        | $+DPO\times3$           | Preference             | 7.22     | 91.60      | <u>58.1</u> |
|          | $+DPO \times C_4^2$     | Preference             | 7.38     | 90.29      | 48.1        |
| urs      | +InfoNCA                | Reward                 | 7.63     | 92.35      | 56.9        |
| On       | +NCA                    | Reward                 | 7.52     | 90.31      | 59.4        |

## 2) Suboptimal responses are also important for LLM alignment.

| Method             | K=2  | K=3  | K=4  | 9 7.5                                              |
|--------------------|------|------|------|----------------------------------------------------|
| InfoNCA (MT-bench) | 73.8 | 75.9 | 76.3 | SC 7 C                                             |
| InfoNCA (Alpaca)   | 90.7 | 90.2 | 92.4 | 된 7.0 ⋅ K=2                                        |
| NCA (MT-bench)     | 73.2 | 73.3 | 75.2 | ⊕ 6.5 K=4                                          |
| NCA (Alpaca)       | 89.9 | 90.3 | 90.3 | 5                                                  |
| Average            | 81.9 | 82.4 | 83.5 | $\sim$ 0.0 0.5 1.0 1.5 2.0 $KL(\pi_{\theta}  \mu)$ |

### 3) NCA is extremely helpful in reasoning tasks like math and coding.

| Model            | Reasoning | Coding   |           | Math    |        |           |              | Ava    |             |
|------------------|-----------|----------|-----------|---------|--------|-----------|--------------|--------|-------------|
| Model            | BBH (CoT) | LeetCode | HumanEval | GSMPLUS | MATH   | TheoremQA | <b>SVAMP</b> | ASDiv  | Avg.        |
| Mixtral-7B-SFT   | 60.9      | 3.3      | 28.1      | 28.5    | 5.8    | 7.0       | 26.9         | 35.8   | 24.5        |
| + DPO            | 61.7      | 2.2 ↓    | 31.7      | 12.1 ↓  | 6.4    | 9.8       | 34.1         | 46.1   | 25.5        |
| + NCA            | 60.8 ↓    | 3.3      | 26.8 ↓    | 32.3    | 11.7   | 11.0      | 65.3         | 74.3   | 35.7        |
| Mixtral-8×7B-SFT | 75.6      | 16.7     | 61.0      | 57.6    | 40.1   | 25.9      | 85.9         | 87.5   | 56.3        |
| + DPO            | 74.9 ↓    | 17.2     | 47.6 ↓    | 55.8 ↓  | 35.3 ↓ | 26.9      | 67.3 ↓       | 75.7 ↓ | 50.1↓       |
| + NCA            | 75.6      | 21.1     | 62.8      | 61.5    | 41.6   | 26.9      | 86.8         | 86.9   | <b>57.9</b> |

#### 4) NCA effectively prevents chosen likelihood from decreasing.

