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ShiftAddLLM: Reparameterization

Background and Motivation

▪Powerful LLMs suffer from large deployment cost

▪ Extensive parameters and memory usages:

▪ E.g., GPT-3 has 175B parameters and needs 350GB GPU memory

▪ Dense multiplications: 

▪ E.g., GPT-3 performs 1015 FLOPs for a single forward pass

ShiftAddLLM: Multi-objective Optimization

Evaluation Results

▪Previous solutions for efficient LLM deployment 

▪ Solution 1: Post-training quantization:

▪ Directly quantize the pretrained LLMs without fine-tuning

▪ Still have many multiplications and need de-quantization

▪ Solution 2: Shifts and adds reparameterization: 

▪ Up to 31× unit energy reduction and 26× unit area reduction

▪ Previous methods need full parameter training to recover accuracy

Can we reparameterize the pretrained LLMs with shifts 

and adds in a “post-training” manner?

▪ShiftAddLLM

▪ Do not need fine-tuning and de-quantization

▪ Reparameterize multiplications with shifts and adds

▪Problem: Accuracy drops after reparameterization

▪ One reason: Mismatch between weight objectives and activation objectives

▪Evaluation setup

▪ Tasks: One language modeling task (WikiText-2) and eight downstream tasks

▪ Datasets: WikiText-2, ARC, BoolQ, Copa, PIQA, RTE, StoryCloze, and MMLU

▪ Models: OPT, LLaMA-1/2/3, Gemma, Mistral, and Bloom

▪Benchmark baselines

▪ OPTQ [ICLR’22], LUT-GEMM [ICLR’24], QuIP [NeurIPS’23], AWQ [MLSys’24]
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Reparameterization:

▪ Step 1: Quantize the 

scaling factor matrices 

to powers of 2 → 

perform FP16 shift for 

the input activations

▪ Step 2: Leverage LUTs 

to accelerate the 

multiplication between 

the shifted activations 

and the binary weight 

matrices

Step 1

Step 2

▪Solution: Multi-objective optimization with column-wise scaling factors

▪ShiftAddLLM over SOTA baselines

▪Average perplexity reductions of 5.6 and 22.7 at comparable or even lower 

latency compared to the most competitive quantized LLMs at 3 and 2 bits

▪More than 80% memory and energy reductions over the original LLMs
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