

Federated Learning over Connected Modes

Dennis Grinwald, Philipp Wiesner, Shinichi Nakajima

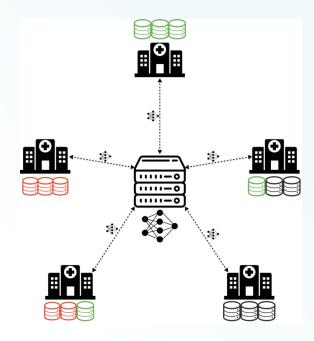
Paper PDF

GitHub repo

www.bifold.berlin

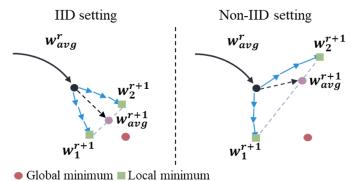
Learning on decentralized data

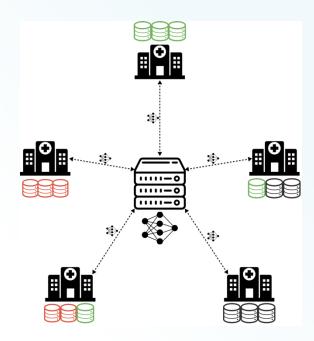
 Collaborative training of a common model on decentralized data (clients) [McMahan'17]



Learning on decentralized data

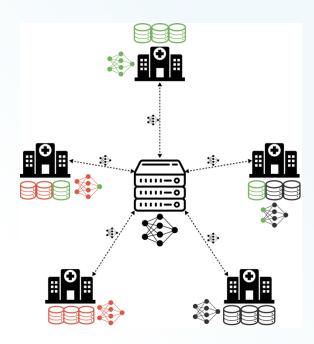
- Collaborative training of a common model on decentralized data (clients) [McMahan'17]
- Challenge: Communication-efficiency and statistically heterogeneous (Non-IID) client data [Zhao'20]





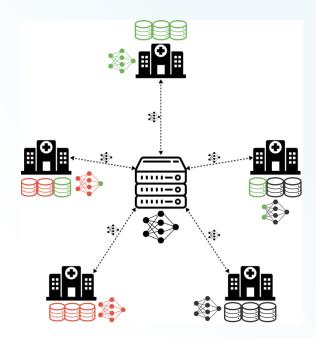
Global vs. Personalized FL (pFL)

 Each client owns and trains personalized model [Tan'22]



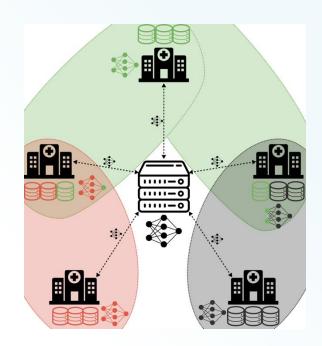
Global vs. Personalized FL (pFL)

- Each client owns and trains personalized model [3]
- Problem 1: pFL approaches typically do not benefit and can even harm global model performance

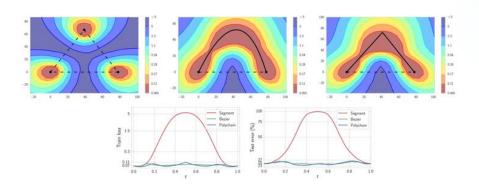


Global vs. Personalized FL (pFL)

- Each client owns and trains personalized model [3]
- Problem 1: pFL approaches typically do not benefit and can even harm global model performance
- Problem 2: Personalized models do not directly benefit from one another but through global model

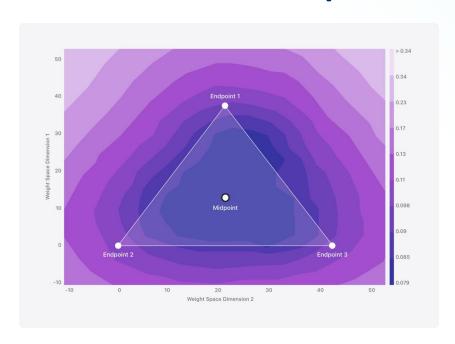


(Linear) Mode Connectivity



- Observation: Neural network solutions (modes) that started from different random initializations are connected by simple paths [Garipov'18]
- Models along these paths in parameter space exhibit low loss and functional diversity

Neural Network Simplex Learning



- Linear connectivity can be enforced during training with extra computational cost [Wortsman'21]
- Midpoint exhibits good generalization performance
- Midpoint per design lies in flat minimum

Neural Network Simplex Learning

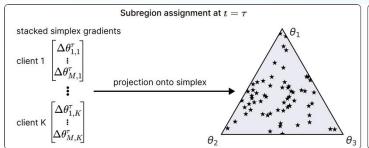
- Linear connectivity can be enforced during training with extra computational cost [Wortsman'21]
- Midpoint per design lies in flat minimum
- Connection to Hochreiter et al. (1997): Flat minima and tend to be more robust to gap between empirical (training) loss and population loss (test loss) and thus generalize better.

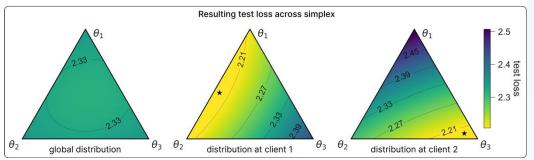
Flat Minimum Sharp Minimum

[Foret'21]

Federated Learning over Connected Modes (Floco)

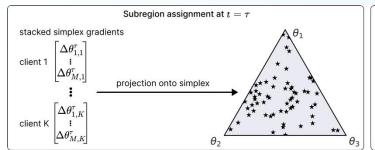
- Idea: Train neural network solution simplex within which similar clients are grouped together [Grinwald'24]
- Each point in the simplex correspond to one model realization
- Sufficient to train solution simplex over last layer parameters only

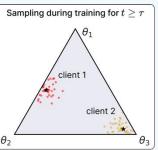


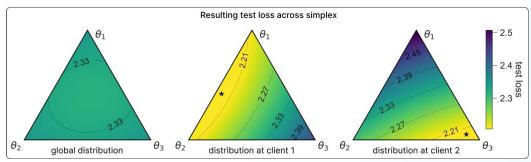


Federated Learning over Connected Modes (Floco)

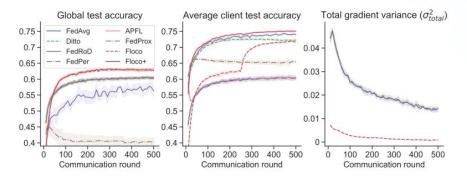
- Idea: Train neural network solution simplex within which similar clients are grouped together
- Each point in the simplex correspond to one model realization
- Sufficient to train solution simplex over last layer parameters only
- Result:
 - Flat region in loss surface
 - SOTA personalized models that benefit each other (proj. points)
 - Robust and well-performing global model (midpoint)







Evaluation



Reduced gradient variance

			Table 1	: Avera	ige <mark>glo</mark> t	al and	local te	st accur	асу.				
	CIFAR-10								FEMNIST				
	CifarCNN				pre-trained ResNet-18				FemnistCNN		pre-trained		
	5-Fold		Dir(0.3)		5-Fold		Dir(0.3)				SqueezeNet		
FedAvg	60.36	60.38	60.74	60.78	75.33	76.94	68.59	59.27	78.83	79.84	75.13	75.51	
FedProx	60.68	60.36	60.40	60.27	76.93	77.46	62.27	60.26	78.84	80.15	75.47	75.99	
FedPer	40.23	65.42	33.90	67.86	68.64	84.06	50.84	85.05	50.76	73.83	64.03	74.43	
APFL	60.56	60.33	60.55	60.65	53.25	46.46	50.97	44.57	4.95	4.98	38.21	58.86	
Ditto	60.36	72.22	60.74	73.90	75.33	69.18	68.59	76.23	78.83	82.02	57.89	65.06	
FedRoD	56.36	74.03	46.12	76.42	17.46	31.82	10.27	33.85	4.95	<u>4.99</u>	4.95	<u>4.95</u>	
FLOCO	62.93	71.78	62.57	71.04	77.15	85.90	73.62	80.38	78.99	84.09	75.86	77.00	
FLOCO+	62.93	75.08	62.57	76.50	77.15	84.88	73.62	85.89	78.99	84.75	75.86	82.41	

Table 2: Average global and local expected test calibration error.

	CIFAR-10									FEMNIST				
	CifarCNN				pre-trained ResNet-18				FemnistCNN		pre-trained			
	5-Fold		Dir(0.3)		5-Fold		Dir(0.3)				SqueezeNet			
FedAvg	24.08	25.61	22.95	24.51	13.77	19.57	13.48	19.57	12.40	16.86	15.54	20.43		
FedProx	23.76	25.56	23.19	24.89	12.40	12.41	15.16	19.83	12.41	16.93	15.48	20.04		
FedPer	47.75	28.22	56.39	25.70	19.73	11.19	38.48	10.88	38.44	21.68	28.28	22.31		
APFL	23.30	25.01	22.19	23.91	28.39	33.39	20.02	26.01	4.95	4.98	7.6	15.82		
Ditto	24.08	19.13	22.95	17.64	13.77	16.43	13.48	14.50	12.40	14.65	15.54	18.06		
FedRoD	29.78	18.40	41.91	17.45	75.59	64.07	89.31	64.07	4.95	<u>4.99</u>	4.99	<u>4.99</u>		
FLOCO	21.82	18.44	20.06	18.75	11.48	9.44	10.30	11.28	10.28	13.94	14.65	19.15		
FLOCO ⁺	21.82	17.69	20.06	16.50	11.48	12.42	10.30	11.98	10.28	13.87	14.65	15.35		

Summary

- Floco beats SOTA pFL baselines on local and global test accuracy and ECE.
- Applicable to both randomly initialized as well as pretrained models.
- Minimal computational overhead as compared to regular FedAvg.
- Promising future directions include cross-device FL settings and the more general model merging setting.

Thank you!

Paper PDF

GitHub repo

www.bifold.berlin

Literature

- [1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.
- [2] Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).[3] Kulkarni, Viraj, Milind Kulkarni, and Aniruddha Pant. "Survey of personalization techniques for federated learning." 2020 fourth world conference on smart trends in systems, security and sustainability (WorldS4). IEEE, 2020.
- [3] Tan, Alysa Ziying, et al. "Towards personalized federated learning." IEEE transactions on neural networks and learning systems 34.12 (2022): 9587-9603.
- [4] Garipov, Timur, et al. "Loss surfaces, mode connectivity, and fast ensembling of dnns." Advances in neural information processing systems 31 (2018).
- [5] Nagarajan, Vaishnavh, and J. Zico Kolter. "Uniform convergence may be unable to explain generalization in deep learning." Advances in Neural Information Processing Systems 32 (2019).
- [6] Wortsman, Mitchell, et al. "Learning neural network subspaces." International Conference on Machine Learning. PMLR, 2021.
- [7] Hochreiter, Sepp, and Jürgen Schmidhuber. "Flat minima." Neural computation 9.1 (1997): 1-42.
- [8] Foret, Pierre, et al. "Sharpness-aware minimization for efficiently improving generalization." International Conference on Learning Representations. ICLR, 2021.
- [9] Grinwald, Dennis, Philipp Wiesner, and Shinichi Nakajima. "Federated Learning over Connected Modes." The Thirty-eighth Annual Conference on Neural Information Processing Systems.