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Learning on decentralized data

* Collaborative training of a common model on SES
decentralized data (clients) [McMahan’17] EEE
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Learning on decentralized data

. .. -
* Collaborative training of a common model on SSS
decentralized data (clients) [McMahan’17] EEE
* Challenge: Communication-efficiency and
statistically heterogeneous (Non-IID ) client :
data [Zhao’20]
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Global vs. Personalized FL (pFL)

Each client owns and trains personalized model
[Tan‘22]
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Global vs. Personalized FL (pFL)

* Each client owns and trains personalized model [3]

* Problem 1:

pFL approaches typically do not benefit and can
even harm global model performance
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Global vs. Personalized FL (pFL)

* Each client owns and trains personalized model [3] SSS
* Problem 1: EEE
pFL approaches typically do not benefit and can
even harm global model performance i
- Problem2:. . .
: : : N
Personalized models do not directly benefit from Y [=o] (4
one another but through global model SSSES wi=s) AN




(Linear) Mode Connectivity
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* Observation: Neural network solutions (modes)
that started from different random
initializations are connected by simple paths
[Garipov’18]

* Models along these paths in parameter space
exhibit low loss and functional diversity
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Neural Network Simplex Learning

* Linear connectivity can be enforced during
training with extra computational cost
[Wortsman’21]

* Midpoint exhibits good generalization
performance

* Midpoint per design lies in flat minimum
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Neural Network Simplex Learning

* Linear connectivity can be enforced during
training with extra computational cost
[Wortsman’21]

* Midpoint per design lies in flat minimum

* Connection to Hochreiter et al. (1997) : Flat
, minima and tend to be more robust to gap
between empirical (training) loss and
population loss (test loss) and thus generalize
better.

0.085 Training Function

f(z)

Flat -h)linimum S};axp Minimum

[Foret’21]
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Federated Learning over Connected Modes (Floco)

* Idea: Train neural network solution
simplex within which similar clients are
grouped together [Grinwald’24]

* Each point in the simplex correspond to
one model realization

* Sufficient to train solution simplex over
last layer parameters only

Subregion assignmentat ¢t = 7

stacked simplex gradients
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Federated Learning over Connected Modes (Floco)

o Idea: Train neural network SOlUtion o SimpleXgradientsSubregion assignmentatt = 7 Sampling during training fort > 7
simplex within which similar clients are [a67,)
grouped together A V- et
- - e projection onto simplex “2
* Each point in the simplex correspond to oo
. . 1L.K
one model realization clientk | ¢
A8k 6, 65
* Sufficient to train solution simplex over Resulting tostloss acrass simplex
last layer parameters only 25
* Result: 248
z
23%

* Flat region in loss surface

* SOTA personalized models that ,_
be neflt ea Ch Oth er ( p I’Oj . pOI ntS) 6> global distribution 63 6 distribtion at client 1 63 6, stribution at cﬁent 2 63

* Robust and well-performing global
model (midpoint)




Evaluation

Global test accuracy

Average client test accuracy

Total gradient variance (0%,

0.754 — FedAvg APFL 0.75 1
--- Ditto —-— FedProx
079 — FedRoD  --- Floco 0.7 0.04+
0.65-4 — — FedPer — Floco+ 0.65
0.034
0.6 0.6 1
0.55 1 0.55 1 0.024
0.5 0.5+
0.014
0.454 0.45+ R
0.4 S S R S R e 0.4 04 TTTTSemmemm—ee—e—

0

100 200 300 400 500

Communication round

0 100 200 300 400 500
Communication round

0 100 200 300 400 500
Communication round

Reduced gradient

variance

Technische
Universitat
Berlin

Table 1: Average global and local test accuracy.

BIFOLD

CIFAR-10 FEMNIST

CifarCNN pre-trained ResNet-18 FemnistCNN pre-trained

5-Fold Dir(0.3) 5-Fold Dir(0.3) SqueezeNet
FedAvg 6036 6038 6074 60.78 7533 7694 6859 5927 7883 7984 7513 7551
FedProx 60.68 60.36 6040 60.27 7693 7746 6227 6026 7884 80.15 7547 7599
FedPer 4023 6542 3390 67.86 68.64 84.06 50.84 8505 5076 7383 64.03 7443
APFL 60.56 60.33 6055 60.65 5325 4646 5097 4457 495 498 3821 58.86
Ditto 6036 7222 6074 73.90 7533 69.18 6859 7623 7883 8202 5789 6506
FedRoD 5636 74.03 4612 7642 1746 31.82 1027 3385 495 4.99 4.95 4.95
FLoco 6293 7178 6257 7104 7715 8590 73.62 8038 7899 84.09 7586 77.00
FLocot 6293 7508 6257 7650 7715 84.88 73.62 8589 7899 8475 7586 82.41

Table 2: Average global and local expected test calibration error.
CIFAR-10 FEMNIST

CifarCNN pre-trained ResNet-18 FemnistCNN pre-trained

5-Fold Dir(0.3) 5-Fold Dir(0.3) SqueezeNet
FedAvg 2408 2561 2295 2451 1377 19.57 1348 19.57 1240 16.86 1554 2043
FedProx 23.76 2556 23.19 2489 1240 1241 1516 19.83 1241 16.93 1548 20.04
FedPer 4775 2822 5639 2570 1973 1119 3848 10.88 3844 2168 2828 2231
APFL 2330 2501 2219 23971 2839 3339 2002 2601 4.95 4.98 7.6 15.82
Ditto 2408 1913 2295 i764 1377 1643 1348 1450 1240 1465 1554 18.06
FedRoD 2978 1840 4191 1745 7559 6407 8931 6407 495 499 499 499
FLoco 21.82 1844 2006 875 1148 944 1030 /1.28 1028 /394 1465 1915
FLoco™ 21.82 1769 2006 1650 1148 242 1030 1798 1028 13.87 1465 1535
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Summary

Floco beats SOTA pFL baselines on local and global test accuracy and ECE.

Applicable to both randomly initialized as well as pretrained models.

Minimal computational overhead as compared to regular FedAvg.

Promising future directions include cross-device FL settings and the more general model
merging setting.
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Thank you!
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