On the Stability and **Generalization of Meta-Learning**

Yunjuan Wang, Raman Arora **Johns Hopkins University**

NeurIPS 2024

Motivation

- \bullet diverse tasks with shared similarities, while test data come from entirely new tasks.

Large sets of training data from a single task are often lacking. Training data may stem from

• The challenge is to rapidly adapt to these unseen tasks without the need to train from scratch.

Problem Setup

Task Distribution

Sample *m* different tasks

n training data for each task Meta-sample $\mathbf{S} = \{\mathcal{S}_i\}_{i=1}^m$

Task level learning

Meta level learning

Problem Setup

- $\mathscr{A}(\mathbf{S}): (\mathscr{X} \times \mathscr{Y})^n \to \mathscr{H}.$
- Goal: learn a useful prior over tasks to help with rapid adaptation to new tasks.
- Transfer risk: $L(\mathscr{A}(\mathbf{S}), \mu) = \mathbb{E}_{\mathscr{D} \sim \mu} \mathbb{E}_{\mathscr{S} \sim \mathscr{D}^n} L(\mathcal{A}(\mathbf{S}), \mu)$
- Empirical multi-task risk: $L(\mathscr{A}(\mathbf{S}), \mathbf{S}) = \mathcal{M}$

• Consider a supervised learning setting where each data point is denoted by z = (x, y) drawn from some unknown distribution \mathcal{D} over $\mathcal{X} = \mathcal{X} \times \mathcal{Y}$, where input space \mathcal{X} , label space \mathcal{Y} .

• A meta-learning algorithm \mathscr{A} takes the meta-sample S as input and outputs an algorithm

$$(\mathscr{A}(\mathbf{S})(\mathscr{S}),\mathscr{D}) = \mathbb{E}_{\mathscr{D}\sim\mu}\mathbb{E}_{\mathscr{S}\sim\mathscr{D}^n}\mathbb{E}_{z\sim\mathscr{D}}\ell(\mathscr{A}(\mathbf{S})(\mathscr{S}),z).$$

$$\sum_{j=1}^{m} L(\mathscr{A}(\mathbf{S})(\mathscr{S}_{j}), \mathscr{S}_{j}) = \frac{1}{m} \sum_{j=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \ell(\mathscr{A}(\mathbf{S})(\mathscr{S}_{j}), \mathbf{z}_{j}^{i})$$

Problem Setup

 $u = \arg \min$ u∈‴

regularized empirical loss averaged over tasks:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathscr{W}} \frac{1}{m} \sum_{j=1}^{m} \min_{\mathbf{u}\in\mathscr{W}} \left[L(\mathbf{u}, \mathscr{S}_j) + \frac{\lambda}{2} \|\mathbf{u} - \mathbf{w}\|^2 \right]$$

Task level learning: Given a meta-model (parameterized by meta-parameter w), the hope is that it can be adapted easily to a new task $\mathscr{D} \sim \mu$; in particular, a task-specific model u can be quickly

learned from a task-specific training set $\mathcal{S} \sim \mathcal{D}^n$ of size *n* using the following proximal update:

$$L(\mathbf{u}, \mathcal{S}) + \frac{\lambda}{2} \|\mathbf{u} - \mathbf{w}\|^2$$

Meta level learning: w itself is learned on the given meta-sample $S = \{S_i\}_{i=1}^m$ by minimizing a

Proximal Meta Learning Algorithm

Algorithm 1 Prox Meta-Learning Algorithm \mathcal{A}

Input: Meta-sample $\mathbf{S} = \{S_j\}_{j=1}^m$, epochs T, K_j step sizes γ, η , regularization parameter λ

- 1: $w_1 = 0$.
- 2: for t = 1, 2, ..., T do
- 3: **for** j = 1, ..., m **do**
- 4: $u(w_t, S_j) = \mathcal{A}_{task}(w_t, S_j, K, \eta, \lambda)$ % Using Algorithm 2
- 5: end for
- 6: Calculate the gradient, $\forall j \in [m]$, $\nabla F_{\mathcal{S}_j}(\mathbf{u}(\mathbf{w}_t, \mathcal{S}_j), \mathbf{w}_t) = -\lambda(\mathbf{u}(\mathbf{w}_t, \mathcal{S}_j) - \mathbf{w}_t)$
- 7: Update $\mathbf{w}_{t+1} = \mathbf{w}_t \frac{\gamma}{m} \sum_{j=1}^m \nabla F_{\mathcal{S}_j}(\mathbf{u}(\mathbf{w}_t, \mathcal{S}_j))$
- 8: $\mathbf{w}_{t+1} = \Pi_{\mathcal{W}}(\mathbf{w}_{t+1})$
- 9: end for
- 10: return $@\mathcal{A}_{task}(\mathbf{w}_{T+1}, \cdot, K, \eta, \lambda)$

	Algorithm 2 Task-specific Algorithm \mathcal{A}_{task}
,	Input: Pretrained model w, training data S ,
	#epochs K, step size η , reg. parameter λ
	1: Option 1 (RERM):
	2: $\mathbf{u}(\mathbf{w}, \mathcal{S}) = \operatorname{argmin}_{\mathbf{u} \in \mathcal{W}} L(\mathbf{u}, \mathcal{S}) + \frac{\lambda}{2} \ \mathbf{u} - \mathbf{w}\ ^2$.
	3: Option 2 (GD): Set $u^{(1)}(w, S) = w$
	4: for $t = 1, 2, \ldots, K - 1$ do
	5: $\mathbf{u}^{(k+1)}(\mathbf{w}, \mathcal{S}) = \mathbf{u}^{(k)}(\mathbf{w}, \mathcal{S})$
	$-\eta(abla L(\mathbf{u}^{(k)}(\mathbf{w},\mathcal{S}),\mathcal{S})$
).	$+\lambda(\mathrm{u}^{(k)}(\mathrm{w},\mathcal{S})\!-\!\mathrm{w}))$
$,\mathbf{w}_t)$	6: $\mathbf{u}^{(k+1)}(\mathbf{w}, \mathcal{S}) = \Pi_{\mathcal{W}}(\mathbf{u}^{(k+1)}(\mathbf{w}, \mathcal{S}))$
, ,	7: end for
	8: return Option 1 (RERM): $u(w, S)$
	Option 2 (GD): $\frac{1}{K}\sum_{k=1}^{K} \mathbf{u}^{(k)}(\mathbf{w}, \mathcal{S})$

Uniform meta-stability

 $\mathbf{S} = \{\mathcal{S}_1, \mathcal{S}_2, \dots, \mathcal{S}_j, \dots, \mathcal{S}_m\}$ Meta learning algorithm *A* $S = \{z^1, z^2, \dots, z^i, \dots, z^n\}$ Base learner $\mathscr{A}(\mathbf{S})(\mathscr{S})$ $\mathscr{A}(\mathbf{S})$

Uniform meta-stability

Definition: A meta-learning algorithm \mathscr{A} is β -uniformly meta-stable if for any neighboring metasamples $S, S^{(j)}$, and neighboring samples $\mathcal{S}, \mathcal{S}^{(i)}$, for any task $\mathcal{D} \sim \mu$ and any $z \sim \mathcal{D}$, we have $|\ell(\mathscr{A}(\mathbf{S})(\mathscr{S}), \mathbf{z}) - \ell(\mathscr{A}(\mathbf{S}^{(j)})(\mathscr{S}^{(i)}), \mathbf{z})| \leq \overline{\beta}$

distribution μ . For any β -uniformly meta-stable learning algorithm \mathscr{A} , we have that with probability at least $1 - \delta$,

 $L(\mathscr{A}(\mathbf{S}),\mu) \leq L(\mathscr{A}(\mathbf{S}),\mathbf{S}) + \overline{\beta}\log(mn)\log(1/\delta) + M\sqrt{\log(1/\delta)/(mn)}$

Theorem: Consider a meta-learning problem for some M-bounded loss function ℓ and task

Bound Transfer Generalization Gap

Algorithm	Loss	Conditions	Uniform meta-stability $\bar{\beta}$
Algo. 1 with RERM	convex, G-Lipschitz	$\gamma \leq \frac{1}{\lambda}$	$\frac{G^2}{\lambda m} + \frac{G^2}{\lambda n}$
Algo. 1 with RERM	convex, H -smooth, M -bounded	$\gamma \leq \frac{1}{\lambda}, \lambda \geq H$	$\frac{HM}{\lambda(2n-1)} + \frac{HM}{\lambda(m+1)}$
Algo. 1 with GD	convex, G -Lipschitz, H -smooth	$\eta \leq rac{2}{H+2\lambda}, \gamma \leq rac{1}{\lambda T}$	$\frac{G^2}{\lambda m} + \frac{G^2}{\lambda n}$
Algo. 1 with GD	ρ -weakly convex, G-Lipschitz	$\eta \leq \frac{1}{\lambda}, \gamma \leq \frac{1}{\lambda T}, \lambda \geq 2\rho$	$G^2 \sqrt{\frac{\eta}{\lambda}} + \frac{G^2}{\lambda m} + \frac{G^2}{\lambda n}$
Algo. 3 with GD	ρ -weakly convex, G-Lipschitz	$\eta \leq \frac{1}{\lambda}, \gamma \leq \frac{1}{\lambda T}, \lambda \geq 2\rho$	$G^2 \sqrt{\frac{\eta}{\lambda}} + \frac{G^2}{\lambda m} + \frac{G^2}{\lambda n}$, w.h.p.

Table 1: Bounds on uniform meta-stability β for different families of learning problems. Here, η is the step-size for GD for task-specific learning, γ is the step-size for GD for meta-parameter learning, *m* is the number of tasks during training, *n* is the number of training data for the task at test time.

Extension Proximal Meta-Learning with Stochastic Optimization **Robust Adversarial Proximal Meta-Learning**

Excess Transfer Risk

 $L(\mathscr{A}(\mathbf{S})(\mathscr{S}),\mathscr{D}) - L(\mathbf{u}_*,\mathscr{D}) = L(\mathscr{A}(\mathbf{S})(\mathscr{S}),$

Excess Transfer Risk $\mathscr{C}_{risk}(\mathscr{A})$

Generalization Gap $\mathscr{C}_{gen}(\mathscr{A})$

╋

 $u_* = \arg \min_{u \in \mathcal{W}} L(u, \mathcal{D})$ optimal task-specific hypothesis for the unseen task;

 $u_j^* = \arg\min_{u \in \mathcal{W}} L(u, \mathcal{S}_j)$ optimal task-specific hypothesis for the given training tasks.

$$\mathcal{D}) - \frac{1}{m} \sum_{j=1}^{m} L(\mathcal{A}(\mathbf{S})(\mathcal{S}_j), \mathcal{S}_j)$$

$$\frac{1}{m} \sum_{j=1}^{m} L(\mathscr{A}(\mathbf{S})(\mathscr{S}_{j}), \mathscr{S}_{j}) - L(\mathbf{u}_{j}^{*}, \mathscr{S}_{j})$$

Optimization and Approximation Error $\mathscr{C}_{opt+app}(\mathscr{A})$

+
$$L(\mathbf{u}_{j}^{*}, \mathcal{S}_{j}) - L(\mathbf{u}_{*}, \mathcal{S}_{j}) + L(\mathbf{u}_{*}, \mathcal{S}_{j}) - L(\mathbf{u}_{*}, \mathcal{S}_{j})$$

 ≤ 0

$$\mathbb{E}_{\forall j \in [m], \mathcal{S}_j \sim \mathcal{D}_j^n, \mathcal{D}_j \sim \mu, \mathcal{D} \sim \mu}$$

Excess Transfer Risk

Convex and smooth loss:

Setting
$$\eta = \mathcal{O}\left(\frac{1}{\lambda\sqrt{K}}\right)$$
 gives us $\mathbb{E}\left[\mathscr{C}_{\mathrm{risk}}(\mathscr{A})\right] \leq \mathcal{O}\left(\frac{1}{\lambda\sqrt{K}} + \frac{1}{\lambda m} + \frac{1}{\lambda n} + \frac{\lambda}{T} + \lambda\sigma^2\right)$, where $\sigma^2 = \frac{1}{m}\sum_{j=1}^m \|\hat{w} - \mathbf{u}_j^*\|^2$ is the approximation error.

Convex and non-smooth loss:

Setting
$$\eta = \mathcal{O}\left(\frac{1}{\lambda K^{2/3}}\right)$$
 gives us $\mathbb{E}\left[\mathscr{C}_{\text{risk}}(\mathscr{A})\right] \leq \mathcal{O}\left(\frac{1}{\lambda K^{1/3}} + \frac{1}{\lambda m} + \frac{1}{\lambda n} + \frac{\lambda}{T} + \lambda\sigma^2\right)$

ere

Thank you!