

WaveAttack: Asymmetric Frequency Obfuscation-based Backdoor Attacks Against Deep Neural Networks

Jun Xia¹, Zhihao Yue¹, Yingbo Zhou¹, Zhiwei Ling¹, Yiyu Shi², Xian Wei¹ and Mingsong Chen¹

¹MoE Eng. Research Center of SW/HW Co-design Tech. and App., East China Normal University

²Department of Computer Science and Engineering, University of Notre Dame

NeurIPS 2024

Outline

Background and Motivation

- Our WaveAttack Approach
 - Overview of WaveAttack
 - Asymmetric Frequency Obfuscation
- Experimental Results
- Conclusion

Background

- DNNs are increasingly deployed in safety-critical domains
- Backdoor attacks may cause disastrous consequences

Backdoor Attack Methods

Minimal Sample Impact Methods

- Optimize the size of the trigger and minimize its pixel value, making the
 - backdoor trigger difficult to detect in training samples [NeruIPS'20, ECCV'22]
- Pros: Easy to implement
- Cons: Cannot fully evade existing backdoor detection methods based on training samples

Latent Space Obfuscation-based Methods

- Obfuscate the latent space between benign samples and poisoned samples
 [IJCAI'22, ICLR'23]
- Pros: Bypass latent space detection techniques
- Cons: Suffer greatly from low image quality

Motivation

 Wavelet transform method can decompose an image into four frequency components (i.e.,LL,LH,HL,HH)

(a) Original (b) LL with noises (c) LH with noises (d) HL with noises (e) HH with noises

It is much more difficult to determine the difference between the original image and the poisoned counterpart in **H**

Overview of WaveAttack

Overview of WaveAttack

Trigger Design

Poisoned HH' component with the trigger can be generated as:

$$HH' = HH + a \cdot g(HH; \omega_g)$$

Payload samples:

$$(\boldsymbol{x}_{p},\boldsymbol{y}_{t})|\boldsymbol{x}_{p}=\boldsymbol{T}(\boldsymbol{x})$$

- Regularization samples:
 - $(\boldsymbol{x}_r, \boldsymbol{y}) | \boldsymbol{x}_r = \boldsymbol{T}(\boldsymbol{x})$

Implementation of WaveAttack

- Optimization Objective
 - Use the L_{∞} norm to optimize small residuals

 $\mathbb{l}_r = ||g(HH;\omega_g)||$

- Use the cross-entropy loss function to train the classifier

$$l_c = l(\mathbf{x}_p, \mathbf{y}_t; \boldsymbol{\omega}_c) + l(\mathbf{x}_r, \mathbf{y}; \boldsymbol{\omega}_c) + l(\mathbf{x}_b, \mathbf{y}; \boldsymbol{\omega}_c)$$

- The total loss function is as follows:

$$l_{total} = l_r + l_c$$

Asymmetric Frequency Obfuscation

- Enhance the stealthiness of backdoor attack methods
 - **Employ Different Coefficient** *α* :
 - a small value to improve the stealthiness of triggers during the overall training
 - a larger value to enhance the impact of triggers and further improve the effectiveness of WaveAttack

Experimental Settings

- Experimental Settings
 - Linux workstation with Intel I9-9700K CPU and 32GB RAM, NVIDIA GeForce GTX3090 GPU.
- Research Questions
 - RQ1: Effectiveness of WaveAttack
 - RQ2: Stealthiness of WaveAttack
 - RQ3: Resistance to Existing Defense Methods

Experimental Results: Effectiveness Evaluation (RQ1)

Comparison with five state-of-the-art attack methods

Backdoor Attacks	CIFAR-10		CIFAR-100		GTSRB		ImageNet	
	BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)	BA(%)	ASR(%)
No attack	94.59	-	75.55	-	99.00	-	87.00	-
BadNets	94.36	100	74.90	100	98.97	100	85.80	100
Blend	94.51	99.91	75.10	99.84	98.26	100	86.40	100
WaNet	94.23	99.57	73.18	98.52	99.21	99.58	86.60	89.20
Adapt-Blend	94.31	71.57	74.53	81.66	98.76	60.25	86.40	90.10
FTrojan	94.29	100	75.37	100	98.83	100	85.10	100
WaveAttack	94.55	100	75.41	100	99.30	100	86.60	100

Our WaveAttack achieves the best ASR and BA compared to other SOTA attack methods.

Experimental Results: Stealthiness Evaluation (RQ2)

Experimental Results: Resistance to Existing Defenses (RQ3)

WaveAttack can bypass STRIP and NC detection.

Conclusion

Problems of existing backdoor attack methods

 None of them simultaneously consider both the fidelity of poisoned samples and latent space to enhance the stealthiness of their attack methods

Contributions

- Propose the WaveAttack method to generate stealthier backdoor triggers
- Introduce an asymmetric frequency obfuscation method to enhance the stealthiness and effectiveness of WaveAttack

Experimental results

Achieve higher stealthiness and effectiveness

Thank You !