November 2024

1

Sigmoid Gating is More Sample Efficient than Softmax Gating in Mixture of Experts

Huy Nguyen, Nhat Ho, Alessandro Rinaldo**

Presenter: Huy Nguyen

PhD Student, Department of Statistics and Data Sciences, The University of Texas at Austin

1. Introduction

- **• Mixture of experts (MoE)** [1] aggregates multiple sub-models called experts, each specializes in a region of the input space, to jointly perform a task.
- **•** For each input, the gating network guarantees that the most relevant experts are assigned more weights.

Figure 1: Illustration of the Mixture of Experts.

1. Introduction

• MoE with softmax gating function:

$$
f_{G_*}(x) := \sum_{i=1}^{k_*} \frac{\exp((\beta^*_{1i})^\top x + \beta^*_{0i})}{\sum_{j=1}^{k_*} \exp((\beta^*_{1j})^\top x + \beta^*_{0j})} \cdot h(x,\eta^*_{i}),
$$

• Softmax gating issue: introduces an unexpected competition among experts, that is, when the weight of one expert increases, those of the others decrease $accordingly \rightarrow expert collapse phenomenon.$

1. Introduction

• Solution to the expert collapse issue: MoE with sigmoid gating [2]

$$
f_{G_*}(x) := \sum_{i=1}^{k_*} \frac{1}{1 + \exp(-(\beta_{1i}^*)^\top x - \beta_{0i}^*)} \cdot h(x, \eta_i^*),
$$

- **• Question:** Under the expert estimation problem, is the sigmoid gating function more sample efficient than the softmax gating function?
- **• →** We consider an MoE-based regression problem.

2. Preliminaries

- The inputs are sampled from some known probability distribution: $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} \mu$
- **The outputs** are generated according to the model

$$
Y_i = f_{G_*}(X_i) + \varepsilon_i, \quad i = 1, \ldots, n,
$$

where $\varepsilon_1,\ldots,\varepsilon_n$ are independent Gaussian noise variables $\varepsilon_i|X_i \sim \mathcal{N}(0,\nu)$ and

$$
f_{G_*}(x):=\sum_{i=1}^{k_*}\frac{1}{1+\exp(-(\beta_{1i}^*)^\top x-\beta_{0i}^*)}\cdot h(x,\eta_i^*),
$$

- Above, k_{*} is the true number of experts.
- $G_* := \sum_{i=1}^{k_*} \frac{1}{1 + \exp(-\beta_{0i}^*)} \delta(\beta_{1i}^*, \eta_i^*)$ is a mixing measure with unknown parameters $(\beta_{0i}^*, \beta_{1i}^*, \eta_i^*)_{i=1}^{k_*}$.

2. Preliminaries

• Least square estimation: we estimate the unknown parameters $(\beta_{0i}^*, \beta_{1i}^*, \eta_i^*)_{i=1}^{k_*}$ through the unknown mixing measure $G_* := \sum_{i=1}^{k_*} \frac{1}{1 + \exp(-\beta_{0i}^*)} \delta_{(\beta_{1i}^*, \eta_i^*)}$ as follows:

$$
\widehat{G}_n := \argmin_{G \in \mathcal{G}_k(\Theta)} \sum_{i=1}^n \Big(Y_i - f_G(X_i) \Big)^2,
$$

where
$$
g_k(\Theta) := \{ G = \sum_{i=1}^{k'} \frac{1}{1 + \exp(-\beta_{0i})} \delta_{(\beta_{1i}, \eta_i)} : 1 \le k' \le k, (\beta_{0i}, \beta_{1i}, \eta_i) \in \Theta \}
$$

denotes the set of mixing measures with at most k components with $k > k_*$.

2. Preliminaries

• **Challenges:** Since $k > k_*$, there must be some true atom fitted by at least two atoms. Assume $(\hat{\beta}_{1i}^n, \hat{\eta}_i^n) \rightarrow (\beta_{11}^*, \eta_1^*)$ for $i \in \{1, 2\}$, then to ensure the convergence of the regression function, the following gating convergence must hold for almost every x:

$$
\sum_{i=1}^2 \frac{1}{1+\exp(-(\hat{\beta}_{1i}^n)^\top x-\hat{\beta}_{0i}^n)} \to \frac{1}{1+\exp(-(\beta_{11}^*)^\top x-\beta_{01}^*)},
$$

as $n \to \infty$. This limit is attained iff $\beta_{11}^* = 0_d$.

- **Example 1:** All the over-specified parameters β_{1i}^* are equal to zero;
- **Example 2:** At least one among the over-specified parameters β_{1i}^* is non-zero.

3. Regression Function Estimation

• Under the Regime 1, the regression estimation rate is parametric on the sample size

$$
||f_{\widehat{G}_n} - f_{G_*}||_{L^2(\mu)} = \mathcal{O}_P([log(n)/n]^{\frac{1}{2}}).
$$

• Under the Regime 2, since the gating convergence does not hold, the regression estimation cannot converge to the true regression function. Instead, we have

$$
\textnormal{inf}_{\overline{G} \in \overline{\mathcal{G}}_k(\Theta)} \|f_{\widehat{G}_n} - f_{\overline{G}}\|_{L^2(\mu)} = \mathcal{O}_P([\log(n)/n]^{\frac{1}{2}})
$$

where $\overline{G} \in \overline{\mathcal{G}}_k(\Theta) := \arg \min_{G \in \mathcal{G}_k(\Theta) \setminus \mathcal{G}_{k_\infty}(\Theta)} ||f_G - f_{G_*}||_{L^2(\mu)}$.

4. Expert Estimation - Regime 1

- **• Summary of expert estimation rates** for
	- 1. Strongly identifiable experts (ReLU and GELU experts);
	- 2. Non-strongly identifiable experts (polynomial experts and input-free experts).

4. Expert Estimation - Regime 2

- **• Summary of expert estimation rates** for
	- 1. Weakly identifiable experts (ReLU, GELU and polynomial experts);
	- 2. Non-strongly identifiable experts (input-free experts).

5. Conclusion

- From the perspective of the expert estimation problem in the MoE-type regression, we observe that:
	- ❖ The sigmoid gating is more sample efficient than the softmax gating;
	- ❖ The sigmoid gating is compatible with a broader class of experts than the softmax gating.

THANK YOU!