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The real-world image dehazing task remains challenging due to the complexities in accurately modeling
real haze distributions and the scarcity of paired real-world data.

|:I |:| D|:| Successful dehazing

Dehaze Network
Trained on Synthetic Dataset

Domain Gap

“The domain gap between synthetic data and real-world data
is like an ocean, separating us from each other.”
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To address these challenges, our contributions are summarized as follows:
«  We propose a dehazing method, the COopeRative Unfolding Network (CORUN)
» We propose a semi-supervised domain-adaptation framework, Coherence-based Pseudo-label Generator (Colabator)

« We evaluate our CORUN with the Colabator framework on real-world dehazing tasks. Abundant experiments demonstrate
that our method achieves state-of-the-art performance.
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“Don’t worry, with Colabator’s help, even the widest -
domain gap can feel as close as a dear friend from afar, - '
bridging the distance with ease.”
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The atmospheric scattering model (ASM): P +A 1— t

/1N

Hazy image Clearimage Atmosphericlight Transmission map

{R,G,B}

Some of previous ASM-based Methods: Estimate 4 and t(x) then calculate: J(x)

« Estimating atmospheric light and the transmission map
separately ignores the correlated features between them.

i

* It ignores the diversity of degradation in real-world scenes
beyond hazy.
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We implicitly estimate A to focus on the detailed characterization of the ’
scene and the relationship between volumetric haze and scene:

P(z)=J@)t(x)+A(l—t(zr)) =) P=J.-T+I-T

I: all-one matrix T: Transmission Map

{R,G,B} {R,G,B}
L | : Scene

Based on the simplify formulation, we can define our cooperative dehazing energy function like:

1
LJT)==|P-J - T+T-12+ Y(J) 4+ o(T) Where y(]) and ¢(T) are regularization terms on J and T.
5 2

We introduce two auxiliary variables T and j to approximate T and ], respectively. This leads to the
following minimization problem:

{J, T} = argmin L(J, T)
J,T



Now, let’s optimize the transmission and scene based on PGD algorithm and our "fﬁ‘h
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(ii) Details of TGDM at the k" stage.

 Give the estimated coarse transmission map T and dehazed image J,_, at iteration k — 1, the variable T can be updated

as:

1 ) 2

T}, = argminz HP —J T+ T— IH2 + 6(T)
T

«  We construct the proximal mapping between T and T by a encoder-decoder like neural network which we named T-CPMM
and denoted as proxy:
Tk; = pI‘OXd)(Jk_l, Tk;)

 The auxiliary variables T , which we calculate by our proposed TGDM can be formulated as:

A A A A T —_
To= Y @-F -3 @ P SR
ce{R,G,B} (I - Jk—l)

)

The variable Ay is a learnable parameter, we learn this parameter at each stage during the end-to-end learning process,
allowing the network to adaptively control the updates in iteration.
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(iii) Details of SGDM at the k" stage.

« Give T, and ], the variable ] can be updated as:

1 N ~
Ji = argmin§\|P —J- T+ Ty — I3 + ()
J

!

« Same as the proximal mapping process in the transmission optimization, S-CPMM has the similar structure as T-CPMM but
different inputs, we denote S-CPMM as prox,,:

Jp = proxw(jk, T;)
«  Where the J, we process by our SGDM can be presented as:
jk: = (TI;I_T]{; = /Lk:[)_l 2 (T;—P + T;_Tk = T;_ an ,LLk;Jk_l)

As the Ay in transmission optimization, uy is also a learnable parameter to bring more generalization capabilities to the
network.
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: Stage1 ! @ Element-wise summation
[
| % -t © Element-wise subtraction
o | |
P (Initial /) | 9) % | @ Element-wise multiplication
| /=|oa|—,
15= @) I ® Dot product
1o L2, ) )
O @ Channel-wise summation
"l = )
=y=

- Matrix transposition

Initial T

Multiplicative inverse

(i) The architecture of the proposed CORUN.

Each stage of CORUN includes Transmission and Scene Gradient Descent Modules (T&SGDM) paired with
Cooperative Proximal Mapping Modules (T&CPMM). These modules work together to model atmospheric

scattering and image scene features, enabling the adaptive capture and restoration of global composite
features within the scene.

Each CPMM block uses a 4-channel convolution to embed T and J into a feature map. This enables S-CPMM to
learn additional scene feature information, such as atmospheric light and blur, assisting SGDM in generating higher-
quality dehazed results with more details.

Our method provides better degradation resistance in the generated results compared to other methods, resulting in
higher image quality. It delivers better results in real-world dehazing tasks.
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(i) Pre-training phase (ii) Fine-tuning phase with our Colabator

Pre-training network using  Fine-tuning network using paired synthetic data and degraded real data
paired synthetic data. by Colabator with only 5000 iter. No additional computational cost during inference.

Iterative mean-teacher dehazing: P Tig = fo...(PLo), Pig: Thq = fo..(A:(PLg))

This method applies strong data augmentation A to real hazy images, with the teacher network using the original
image and the student network using the augmented one, resulting in varying dehazing quality, reducing overfitting
and progressively improving supervision reliability.

Label trust weighting: w = ¥(norm(D(S%,)) - norm(Q(S )

This method assigns reliability weights to locations in pseudo-dehazed images from the teacher network by
evaluating haze density and image quality. Using CLIP-based and non-reference metrics (D and Q), it calculates
normalized scores to emphasize clearer, higher-quality regions, improving model supervision.
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Optlmal label pOOI: chg, T%Q, PPse7 TP867 Wpse = C(PLQa eteaa estua -Asa D()a Q<)7 P)

The optimal label pool ¢ maintains the best
pseudo-labels by updating them only when new
dehazed images show improvement, thus
stabilizing training and enhancing label reliability
within the Colabator framework.

Weights update: 0ica = n6tca + (1 — 1)0stu.

The teacher network updates its weights through
an exponential moving average of the student’s
weights, enabling stable, continuous integration
of learned parameters.

Algorithm 1 Optimal label pool process

Require: Haze density evaluator D(-) and image quality evaluator Q(-);
Optimal label pool P;

Sample a batch of real hazy images {P 5 }7_;;

for each P7’;, do

Get teacher network prediction: Pg oy T R = fo...(PTq,);

Partition Pli@ into N x N and get SR

7 Z

Compute score map of S%@i. g4 = norm( (SR )) and q; = norm(Q(stQz)).

Load PPseza Tgsep WPpPseis dpseiv qPse; = P(Z)
if d; > dpse; and q¢; > qpse,; then
Compute trusted weight: w; = ¥ (d; + ¢;)

R R e
Update P(i) = (PHQ ,THQ , Wi, di, @)

Return Pg 5. Tg 5, Wi as pesudo label.

else
R R
Return P .. T5, ., Wpse, as pesudo label.

end if
end for
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Hazy image PDN DAD PSD D4 DGUN RIDCP Ours RIDCP Ours Ground truth



Partial Results:

Metrics | Hazy PDN [!1] MBDN [14] DH[I5] DAD [27] PSD [19] D4 [26] RIDCP [7] DGUN [10] Ours
FADE| 2484  0.876 1.563 1.895 1.130 0.920 1.358 0.944 1:111 0.824
BRISQUE| [36.642 30.811 27672 33.862  32.241 21713 33210 11293 27.968  11.956
NIMA?T 4483 4464 4.529 4.522 4312 4598 4484 4.965 4.653 5.342

Table 1: Quantitative results on RTTS dataset. Red and blue indicate the best and the second best.

Class(AP) |Hazy PDN [11] MBDN [I4] DH[!5] DAD [27] PSD[19] D4 [26] RIDCP [7] DGUN [10] Ours

0 0¥,
}.. NEURAL INFORMATION
"'-i. , PROCESSING SYSTEMS
QY

Table 11: Ablation of our simplified ASM formula.

ASM formula ] NIMA 1 BRISQUE | FADE|
w/o simplify 5.203 14.469 0.817
w/ simplify(CORUN+) | 5.342 11.956 0.824

Table 13: Effects of integrating our Colabator with
more cutting-edge dehazing methods. The gains brought
by Colabator are significant.

ASM formula |NIMA 1 BRISQUE | FADE|
C2PNet[2”] 4715 34314  2.064
C2PNet+Colabator | 4.823  23.662  1.329
FFA-Net[17] 4.822 33235  2.080
FFA-Net+Colabator| 4.839  29.219  0.958
GDN[ 6] 5074  33.051 2611
GDN+Colabator 5258  23.691  0.947

Bicycle .51 0.55 0.54 0.47 052 (.52 0.54 0.57 055 0.59
Bus .25 0.29 0.27 .23 0.29 .25 0.28 0.32 0.31 0.31
Car 0.61 0.65 0.63 0.51 0.65 0.63 0.64 0.67 0.66 0.68
Motor 0.38 0.45 043 0.37 0.38 042 0.42 0.47 0.46 0.49
Person 0.73 0.76 L7 0.69 0.74 0.74 0 0.76 0.76 0.77
Mean ] 0.50 0.54 0.52 0.45 852 0.51 053 0.56 0.55 0.57
Table 6: Object detection results on RTTS[-0].
Datasets | Metrics w/o Colabator w/ Colabator | w/o Colabator w/ Colabator
DGUN DGUN CORUN CORUN (Ours)
FADE] 1.111 0.857 1.091 0.824
RTTS BRISQUE] 25.085 20.731 16.541 11.956
NIMA®T 4813 5.190 4.856 5.342
Table 2: Generalization and Effect of our Colabator.
: w/o Mean- w/o Trusted w/o Optimal . Stages
Datasets| Metrics teacher weight label pool Datasels Metries 1 2 4 (Ours) 6
FADE] 0.912 0.827 0.846 FADE| 0.785 0.808 0.824 0.839
RTTS |BRISQUE|| 15.728 16.606 15.707 RTTS |BRISQUE||15.520 15.151 11.956 16.227
NIMA?T 4.921 4.867 5.285 NIMA1T 5228 5281 5342 5.187

Table 3: Module’s Effect of our Colabator.

Table 4: Effect of stage number.

Table 8: Ablation of our trusted weights present as a

map or value.

Methods | NIMA 1| BRISQUE | | FADE |,
Only Full 5229 | 13.099 | 0.803
Partition+Full(CORUN+) | 5342  11.956  0.824




c;{ v,
NEURAL INFORMATION
"f PROCESSING SYSTEMS
ole
o

Code and Chengyu’s
Paper Homepage

Real-world Image Dehazing with Coherence-based Label Generator

and Cooperative Unfolding Network

Chengyu Fang, Chunming Het, Fengyang Xiao, Yulun Zhangt, Longxiang Tang, Yuelin Zhang, Kai Li, Xiu Lif

Thank you for listening !

00 Meta




