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Introduction

Recent studies have developed deep neural networks (DNNs),
including CNNs and ViTs, for various tasks in medical imaging, such
as disease classification and abnormalities detection in anatomy in
chest X-ray.
We study thorax disease classification in this paper.
Challenges in the Current Literature for Disease Classification.
Effective and robust extraction of features for the disease areas is
crucial for disease classification on radiographic images. Although
various neural architectures, such as CNNs and ViTs, and different
training techniques, such as self-supervised learning with
contrastive/restorative learning, have been employed for disease
classification on radiographic images, there have been no principled
methods that can effectively reduce the adverse effect of noise and
background, or non-disease areas, for disease classification on
radiographic images.
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Contributions

(a) NiH-ChestXray-14 (b) COVIDx (c) CheXpert

Figure 1: Illustration of LFP.

Eigen-projection (first row) and
signal concentration ratio (sec-
ond row) of Vit-Base on NiH-
ChestXray-14, COVIDx, and
CheXpert. Please refer to the
details about the computation
of the eigen-projection in the
main paper. The signal con-
centration ratio for the rank
r = 38 on NIH ChestX-
ray14, COVIDx, and CheXpert
are 0.959, 0.964, and 0.962 re-
spectively.

(1) In order to address the aforementioned challenge, we propose a novel
Low-Rank Feature Learning (LRFL) method in this paper, which is
universally applicable to the training of all neural networks with the
application for thorax disease classification. Our LRFL method employs
low-rank features for disease classification. The usage of low-rank
features is empirically motivated by a Low Frequency Property (LFP)
illustrated in Figure 1. That is, the low-rank projection of the ground
truth training class labels possesses the majority of the information of
the training class labels.
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Contributions (Cont’d)

(2) We provide a theoretical analysis showing a sharp generalization bound
for the LRFL method, underscoring the substantial benefits of employing
low-rank regularization within LRFL. It is worthwhile to mention that
the literature has studied low-rank learning using the Truncated Nuclear
Norm (TNN) resembling LRFL. Our LRFL method builds upon these
foundational principles by incorporating low-rank regularization into the
training of neural networks, aiming to improve thorax disease
classification by reducing the adverse effects of noise and irrelevant
background information. Different from the conventional low-rank
learning methods, our approach introduces a separable
approximation to the TNN, facilitating the optimization process and
enhancing the generalization ability of the model.
Moreover, we have employed a conditional diffusion model trained on
COVIDx and CheXpert datasets to generate synthetic images. These
synthetic images are then added to their respective training sets to form
the augmented training data on which our LRFL models are trained.
This approach has further elevated the state-of-the-art mAUC scores
achieved by LRFL on both COVIDx and CheXpert datasets.
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Formulation

Training Pipeline. We utilize the masked MAE technique [1] for
the initial pre-training of both CNNs and ViTs following [2], and
subsequently fine-tune the pre-trained networks with our LRFL. The
full training pipeline has three steps: (1) the pre-training step,
where we pre-train the networks using the self-supervised restorative
learning method, masked MAE [1], on a diverse pre-training dataset
that includes ImageNet-1k [3] and a collection of X-rays (0.5M) [2].
(2) the regular fine-tuning step, where we fine-tune the pre-trained
networks employing cross-entropy loss aimed at image classification
on specific target datasets, namely NIH-ChestX-ray [4], COVIDx [5],
and CheXpert [6]; (3) the low-rank feature learning step, where
we fix the backbones of the networks and fine-tune the linear
classifier utilizing our novel LRFL method.
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Formulation (Cont’d)

Notations. Suppose the training data are given as {xi, yi}n
i=1 where

xi and yi ∈ RC are the i-th training data point and its corresponding
class label vector respectively, and C is the number of classes. Each
element yi is binary with yi = 1 indicating the i-th disease is present in
xi, otherwise yi = 0. Suppose that the neural network trained by step
two of our pipeline generates a feature vector fW1(0)(x) ∈ Rd (the
output of the layer preceding the final linear/softmax layer of the
network) for any input x, and fW′ (·) is the feature extraction function
with W′ being the weights of the feature extraction backbone of the
network. W1(0) denotes the denotes the weights of feature extraction
backbone by step two of the pipeline. We can train a neural network by
optimizing

min
W

L(W) = 1
n

n∑
i=1

KL
(
yi, σ

(
W2fW1(0)(x)

))
(1)

in the second step of the pipeline, where W1 is initialized by W1(0),
W2 ∈ RC×d, and W = (W1, W2). Here σ is an element-wise sigmoid
function, KL stands for the element-wise binary cross-entropy function.
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Formulation (Cont’d)

In the third step of our pipeline, we add a novel approximate truncated
nuclear norm ∥F∥T to the trainng loss L(W). Let the Singular Value
Decomposition of F be F = UΣV⊤, then the approximate TNN is

computed by ∥F∥T =
n∑

i=1

(
d∑

s=T +1

d∑
k=1

U⊤
siFikVks

)
, where U is an

approximation to U and V is an approximation to V.

The training loss function of LRFL with the approximate truncated
nuclear norm ∥F∥T is
LLRFL(W) = 1

m

∑
vi∈VL

KL
(
yi,
[
σ
(
FW(lin))]

i

)
+ η∥F∥T , which is

separable, so that it can be trained by the standard SGD.

The approximation U and V can be computed as the left and right
eigenvectors of the feature F computed at earlier epochs. In order to
save computation and avoiding performing SVD for F at every epoch,
we propose to update U and V only after certain epochs. Please refer
to Algorithm 1 of the main paper for more details.
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Generalization Bound for Low-Rank Feature Learning

We define the loss function ℓ(NNW(x), y) := ∥NNW(x) − y∥2
2, and the

generalization error of the network is the expected risk of the loss ℓ,
LD(NNW) := E(x,y)∼D [ℓ(NNW(x), y)], with D being the distribution
of the data x and its class label y. The network NNW generates a
feature F ∈ Rn×d of all the training data with Fi = f⊤

W1 (xi) for i ∈ [n].
The kernel gram matrix for the feature F is Kn = 1

n FF⊤. We let
λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂r̄ > 0 where r̄ ≤ min {n, d} is the rank of Kn. Let
σ1 ≥ σ2 . . . ≥ σd be the singular values of F, and Ȳ = U(r̄)U(r̄)⊤Y be
the projection of the training label matrix Y onto the subspace spanned
by the top-r̄ left eigenvectors of F, where U(r̄) ∈ Rn×r̄ is formed by the
top r̄ eigenvectors in U. Then, we have the following theorem giving the
sharp generalization error bound for the linear neural network in (1).

Theorem 0.1
For every x > 0, with probability at least 1 − exp(−x), after the t-th iteration of gradient descent on
the loss L(W) for all t ≥ 1, we have

LD(NNW) ≤
∥

Y − Ȳ
∥

F + c1
(

1 − ηλ̂r

)2t
∥Y∥2

F + c2 min
h∈[0,r]

 h

n
+

√√√√ 1

n

r∑
i=h+1

λ̂i

 +
c3x

n
.

(2)
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Generalization Bound for Low-Rank Feature Learning

The RHS of (2) is the generalization error bound for the linear neural
network used in LRFL as step three of the pipeline. Moreover, let
σ1 ≥ σ2 . . . ≥ σd be the singular values of F. Due to the fact that√

1
n

r∑
i=h+1

λ̂i ≤ 1
n

r∑
i=h+1

σi, it follows by (2) that

LD(NNW) ≤ c1

(
1 − ηλ̂r

)2t

∥Y∥2
F + c2

(
h

n
+ 1

n

d∑
i=T +1

σi

)
+ c3x

n
,

(3)

which holds for all T ∈ [0, d]. (3) motivates the reduction of the
truncated nuclear norm of the feature F.
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Experiments

We evaluate the LRFL models for thorax disease classification on
CheXpert, COVIDx, and NIH ChestX-ray14.

Table 1: Performance comparisons between LRFL models and SOTA baselines
on CheXpert. The best result is highlighted in bold, and the second-best
result is underlined. This convention is followed by all the tables in this paper.
DN represents DenseNet.

Method Architecture Rank Atelectasis Cardiomegaly Consolidation Edema Effusion mAUC (%)
Irvin et al. [6] - 81.8 82.8 93.8 93.4 92.8 88.9

Pham et al. [7] DN121 - 82.5 85.5 93.7 93.0 92.3 89.4
Kang et al. [8] DN121 - 82.1 85.9 94.4 89.2 93.6 89.0
MoCo v2 [2] DN121 - 78.5 77.9 92.5 92.8 92.7 88.7

ViT-S [2] ViT-S/16 - 83.5 81.8 93.5 94.0 93.2 89.2
ViT-S-LR (Ours) ViT-S/16 0.05r 83.7 86.3 90.9 93.7 93.1 89.6

ViT-B [2] ViT-B/16 - 82.7 83.5 92.5 93.8 94.1 89.3
ViT-B-LR (Ours) ViT-B/16 0.05r 81.6 85.4 93.4 94.6 93.9 89.8
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Experiments (Cont’d)

Table 2: Performance comparisons between LRFL models and SOTA baselines
on COVIDx (in accuracy). DN represents DenseNet.

Method Architecture Rank Covid-19 Sensitivity Accuracy
COVIDNet-CXR Small [9] - - 87.1 92.6
COVIDNet-CXR Large [9] - - 96.8 94.4

MoCo v2 [2] DN121 - 94.5 94.0
DN121 [2] DN121 - 97.0 93.5
ViT-S [2] ViT-S/16 - 94.5 95.2

ViT-S-LR (Ours) ViT-S/16 0.01r 97.5 96.8
ViT-B [2] ViT-B/16 - 95.5 95.3

ViT-B-LR (Ours) ViT-B/16 0.003r 98.5 97.0

Table 3: Performance comparison of baseline models and LRFL models on the
CheXpert and COVIDx datasets, with and without synthetic data. n denotes
the number of training images in the respective dataset.

Method Architecture CheXpert COVIDx
Rank # Synthetic Images mAUC (%) Rank # Synthetic Images Accuracy (%)

ViT-S [2] ViT-S/16 - - 89.2 - - 95.2
ViT-S-LR (Ours) ViT-S/16 0.05r - 89.6 0.01r - 96.8

ViT-S (Ours) ViT-S/16 - 0.2n 89.3 - 1.0n 97.0
ViT-S-LR (Ours) ViT-S/16 0.05r 0.2n 89.7 0.01r 1.0n 97.3

ViT-B [2] ViT-B/16 - - 89.3 - - 95.3
ViT-B-LR (Ours) ViT-B/16 0.025r - 89.8 0.003r - 97.0

ViT-B (Ours) ViT-B/16 - 0.25n 89.9 - 1.0n 97.0
ViT-B-LR (Ours) ViT-B/16 0.025r 0.25n 90.4 0.003r 1.0n 97.5
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Experiments (Cont’d)

Table 4: Performance comparisons between LRFL models and SOTA baselines
on NIH ChestX-ray14. RN, DN, and SwinT represent ResNet, DenseNet, and
Swin Transformer.

Method Architecture Pre-training Rank mAUC
Wang et al. [4] RN50

ImageNet-1K

- 74.5
Li et al. [10] RN50 - 75.5

Yao et al. [11] RN&DN - 76.1
Wang et al. [12] R152 - 78.8
Ma et al. [13] R101 - 79.4

Tang et al. [14] RN50 - 80.3
Baltruschat et al. [15] RN50 - 80.6

Guendel et al. [16] DN121 - 80.7
Guan et al. [17] DN121 - 81.6

Seyyed et al. [18] DN121 - 81.2
Ma et al. [19] DN121(×2) - 81.7

Hermoza et al. [20] DN121 - 82.1
Kim et al. [21] DN121 - 82.2

Haghighi et al. [22] DN121 - 81.7
Liu et al. [23] DN121 - 81.8

Taslimi et al. [24] SwinT - 81.0
MoCo v2 [2] DN121 X-rays (0.3M) - 80.6

MAE [2] DN121 - 81.2
RN-50 [2] RN50 ImageNet-1K - 81.8

RN-50-LR (Ours) RN50 0.05r 82.2
DN-121 [2] DN121 ImageNet-1K - 82.0

DN-121-LR (Ours) DN121 0.05r 82.4
ViT-S [2] ViT-S/16 X-rays (0.3M) - 82.3

ViT-S-LR (Ours) ViT-S/16 0.05r 82.7
ViT-B [2] ViT-B/16 X-rays (0.5M) - 83.0

ViT-B-LR (Ours) ViT-B/16 0.05r 83.4
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Experiments (Cont’d): Grad-CAM Visualization

To study how LRFL improves the performance of base models in disease
detection, we use the Grad-CAM to visualize the parts in the input
images that are responsible for the predictions of the base models and
low-rank models.
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Figure 2: Robust Grad-CAM [25] visualization results on NIH ChestX-ray 14.
The figures in the first row are the visualization results of ViT-Base, and the
figures in the second row are the visualization results of Low-Rank ViT-Base.
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Key Takeaways

Low-rank feature learning improves the generalization of DNNs for
disease classification, and it also reduces the adverse effects of the
background and noise.

A novel approximate TNN is proposed to improve the efficiency and
the scalability of low-rank feature learning for DNNs by the standard
SGD.

Sharp generalization error bound for low-rank feature learning is
proved.
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Thank you!
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