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Koodos: Koopman operator driven CTDG framework
n This study formalizes Continuous Temporal Domain Generalization (CTDG), 

where domain distribution evolve continuously, and domains are observed 
at arbitrary times. 

n We introduces a novel method to generate neural networks at any given time, 
aligning with the evolving data distributions.
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Fig 1. An example of continuous temporal domain generalization. Consider training classification models 
for public opinion prediction via tweets, where the training domains are only available at specific political 
events (e.g., presidential debates), we wish to generalize the model to any future based on the underlying 
data distribution drift within the time-irregularly distributed training domains.

Temporal domains are constrained to fixed time intervals.
Primarily focus on single-step generalization.

Traditional Temporal Domain Generalization 

ü Domains are randomly and sparsely distributed along a 
continuous timeline.

ü The model can seamlessly generalize to any given point in time.
ü Controlling the generalization process by inductive bias.

Continuous Temporal Domain Generalization 

− How to model model dynamics and synchronize them with data dynamics?
− How to capture the dominant dynamics within over-parametrized model?
− How to ensure stability and controllability for long-term generalization?

Critical Hurdles:

Problem Definition

n In CTDG, a domain 𝒟(𝑡) represents a dataset collected at time 𝑡, consisting of 

instances {(𝑥!
" , 𝑦!

" )}!#$
%("), where 𝑥!

" ∈ 𝑋(𝑡), 𝑦!
" ∈ 𝑌(𝑡) and 𝑁(𝑡) denotes the 

feature, target and the number of instances. 
n The focus is on gradual concept drift in continuous time, where the 

conditional probability distribution 𝑃(𝑌(𝑡)|𝑋(𝑡)) evolves smoothly over time.
n During training, the model observes a series of domains {𝒟 𝑡$ , 𝒟 𝑡( , … , 𝒟 𝑡) }

collected at irregular time points 𝒯 = 𝑡$, 𝑡(, … , 𝑡) . At each 𝑡! ∈ 𝒯, the model 
learns a predictive function 𝑔(4; 𝜃(𝑡!)) for domain 𝒟 𝑡! . The goal of CTDG is to 
model the dynamic evolution of 𝜃(𝑡!), enabling the prediction of model 
parameters 𝜃(𝑠) at any given time 𝑠 ∉ 𝒯.

Continuous Temporal Domain Generalization (CTDG):

Fig 2. Macro-flows and micro-constraints in the proposed model framework.

n Step 1. Characterizing the Continuous Dynamics of the Data and the Model

Fig 3. Visualization of decision boundary of the 2-Moons dataset (purple and yellow show data regions, 
red line shows the decision boundary). Top to bottom compares two baseline methods with ours; left to 
right shows partial test domains (all test domains are marked with red points on the timeline). All models 
are learned using data before the last train domain.

Fig 4. Interpolated and extrapolated predictive model trajectories. Left: Koodos captures the essence of 
generalization through the harmonious synchronization of model and data dynamics; Middle: DRAIN, as a 
probabilistic model, fails to capture continuous dynamics, which is presented as jumps from one random state 
to another. Right: DeepODE demonstrates a certain degree of continuity, but the dynamics are incorrect.
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n Key Assumption: Distribution Continuity
n We assume that data distributions evolve continuously over time:

𝑑
𝑑𝑡 𝑃" 𝑌 𝑋 = 𝑓(𝑃" 𝑌 𝑋 , 𝑡)

n Key Theorem: Model Continuity
n It can be proved that the model parameters are also continuously evolving:
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n Key Methodology : Model Dynamic Systems
n Encouraging topological conjugation (ℎ ∘ 𝜁 = 𝜁 ∘ 𝑓) to synchronize model 

dynamics with data dynamics.
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Intuitive:

n Step 2. Modeling Nonlinear Model Dynamics by Koopman Operators

n Model 𝒉 in high-dimensional 𝜽 spaces are computationally intensive 
and unstable!

n Solution: identify principal dynamics in Koopman Space.

Koopman Theory provides a method for the 
global linearization of nonlinear dynamics. 

n Step 3. Joint Optimization of Model and its Dynamics with Prior Knowledge
n Joint Optimization (five constraints as shown in Fig. 2 Right.)
n Combination of Prior Knowledge

Dynamic system control techniques can be 
used for control model generalization!
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𝑧 = 𝜑(𝜃)
𝑑𝑧
𝑑𝑡

= 𝒦𝑧
𝜃 = 𝜑!"(𝑧)

Operation Interface: 𝓚
n Analyzing the eigenvalue of 𝒦

n Adding constraints to 𝒦


