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Multi-Task Regression : Definition

 • Multi-task learning: inspired by human intelligence, enabling knowledge transfer 
 • It leverages shared information across tasks to boost overall performance. 
 • Key benefits: enhanced accuracy and structured representations from diverse and multimodal data. 
 • Successfully applied in fields like computer vision, NLP, and biology.
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Multi-Task Regression : Problem Setup

•  We consider T tasks with the input space                      and the output space 
•  We consider      samples  
•  We consider the input matrix 
• We consider the the output matrix 

Regression : To learn                   such that :  Wt ∈ ℝd×q

𝒳(t) ⊂ ℝd 𝒴(t) ⊂ ℝq

nt
X(t) = [x(t)

1 , …, x(t)
nt ] ∈ ℝd×nt, x(t)

i ∈ 𝒳(t)

Y(t) = [y(t)
1 , …, y(t)

nt ] ∈ ℝq×nt , y(t)
i ∈ 𝒴(t)

∀t ∈ {1,…, T}, Y(t) =
X(t)Wt

d
+ ϵ(t)

 with ϵ(t) ∈ ℝnt×q, ϵ(t)
i ∼ 𝒩(0,ΣN) , ΣN ∈ ℝq×q



The following minimization problem governed by a parameter      that controls the balance between the 
common and specific components of                                                 :

 • We propose to decompose the weights to learn into  
 •                    is a common matrix that captures information across all the T tasks 
 •                    is a task-specific matrix which captures deviations specific to task t
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Multi-Task Regression : Regularization objective

W = [W1, …, WT]⊤ ∈ ℝTd×q

W0 ∈ ℝd×q

Vt ∈ ℝd×q

Wt = W0 + Vt

λ

W*0 , {V*t }T
t=1, λ* = arg min

1
2λ

∥W0∥2
F +

1
2

T

∑
t=1

∥Vt∥2
F

γt
+

1
2

T

∑
t=1

Y(t) −
X(t)Wt

d

2

F

 with γ = [γ1, …, γT]
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Multi-Task Regression : W decomposition



6

Main contributions and results

 • Random Matrix Theory: Exact computation of train and test risks and decomposition of test risk into 
signal (effectiveness) and noise (negative transfer) terms. 

 • Test Risk Optimization: We show how the signal and noise terms compete with each other depending 
on  for which we obtain an optimal value optimizing the test risk. 

 • We derived a closed-form solution for  based on data covariances, signal-generating hyperplanes, 
noise levels, and dataset size. 

 • We demonstrate the patterns observed in real-world regression problems with linear models also 
apply to neural networks in the context of multivariate time series forecasting (MTSF).  

 • By obtaining , we make a simple univariate linear model outperform the current sota models.

λ

λ*

λ*



7

Assumption 1: Concentrated Random Vector  
We assume that there exists two constants  (independent of dimension d) such that, for any task t, for any 1-Lipschitz     
function f, any feature vector  verifies :  

   

C, c > 0
x(t)

∀t > 0 : ℙ( | f (x(t)) − 𝔼[ f (x(t))] | ≥ t) ≤ Ce−(t/c)2, 𝔼[x(t)] = 0 and Cov[x(t)] = Σ(t)

Assumption 2: High-Dimensional Asymptotics 

As  and More specifically, we assume that with  d → ∞, nt = 𝒪(d ) T = 𝒪(1) .
n
d

a.s. c0 < ∞ n =
T

∑
t=1

nt .

Assumptions
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Main Theoretical Results



9

Main Theoretical Results
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Comparison between practice and theory
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Application to Multivariate Time Series Forecasting
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Application to Multivariate Time Series Forecasting

• Our regularization approach allows for the efficient use of univariate models in a multivariate context.  
• We show that our method improves performance over PatchTST and DLinear compared to independent application 

to each channel. 
• It enables univariate models to reach SOTA performance similar to multivariate models like SAMformer and 

iTransformer.
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Conclusions and Future Works

• Explored linear multi-task learning with a closed-form solution for an optimization problem leveraging 

information across multiple tasks. 

• Applied Random Matrix Theory to derive asymptotic training and testing risks. 

• Provided insights into high-dimensional multi-task learning regression. 

• Successfully applied theoretical analysis to multi-task regression and multivariate forecasting on synthetic 

and real-world datasets. 

• Laid a solid foundation for future research using random matrix theory with more complex models, 

including deep neural networks, within the multi-task learning framework.


