Masked Hard Attention Transformers Recognize Exactly the Star-Free Languages

Andy Yang (University of Notre Dame, USA) David Chiang (University of Notre Dame, USA) Dana Angluin (Yale University, USA) 11 Nov 2024

Background

Over inputs of unbounded length, what problems can (and can't) transformers solve?

Over inputs of unbounded length, what problems can (and can't) transformers solve?

and how can we prove it?

Expressivity: Transformer Encoders and Formal Models

What formal languages are recognized by transformer encoders?

What formal languages are defined by logical formulas?

Masked Hard Attention Transformers

Transformer Encoders

Transformer Encoders

Each position can only attend to positions strictly to the left

Focus all attention on a single position - find maximum score and break ties to the left/right

Star-Free Languages

Dyck-1 of Depth 2(matched parentheses 2 deep) $(ab)^*$ (repeated ab's) $\Sigma^* aa \Sigma^*$ (strings that contain substring aa) $\Sigma^* ab (\Sigma \setminus \{a\})^* ab$ (building block of induction heads)

Corollaries

How does using strict vs non-strict masking affect expressive power?

Non-Strict 0 1 2 3 4

Strict masking is more expressive

Theorem

Masked hard-attention transformers with only non-strict masking recognize exactly the stutter-invariant star-free languages.

For instance

- (*ab*)* is not stutter invariant
- $(a^*b^*)^*$ is stutter invariant

How do positional embeddings affect expressive power?

Positional Embeddings

Using sinusoidal position embeddings is more expressive

Theorem

Masked hard-attention transformers with rational sinusoidal positional embeddings recognize exactly the regular languages in AC^0

How does adding more layers affect expressive power?

Transformer Depth

Adding more layers is more expressive

Theorem

Masked hard-attention transformers with k + 1 layers are strictly more expressive than masked hard-attention transformers with k layers

It requires k + 1 layers to recognize the language STAIR_{k+1}

Parting Notes

- Hard attention results may not apply to softmax attention
- We don't consider autoregressive language modeling
- No claims on empirical learnability

Formal language theory can quite effectively explain the computational behavior of masked-hard attention transformers