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Background



Question

Over inputs of unbounded length,

what problems can (and can’t)

transformers solve?
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Question

Over inputs of unbounded length,

what problems can (and can’t)

transformers solve?

and how can we prove it?
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Expressivity: Transformer Encoders and Formal Models
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What formal languages

are recognized by

transformer encoders?

∀i .Qa(i)

∀i .(Qa(i) → ∃j .(i < j ∧ Qb(j)))

etc.

What formal languages are

defined by logical formulas?
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Masked Hard Attention

Transformers



Transformer Encoders
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Transformer Encoders
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Strict Future Masking

Each position can only attend to positions strictly to the left
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Leftmost/Rightmost Unique Hard Attention

Focus all attention on a single position - find maximum score and

break ties to the left/right
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Main Result
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Star-Free Languages



What are Star-Free Languages?

Periodic (regular)
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Examples of Star-Free Languages

Dyck-1 of Depth 2 (matched parentheses 2 deep)

(ab)∗ (repeated ab’s)

Σ∗aaΣ∗ (strings that contain substring aa)

Σ∗ab (Σ \ {a})∗ ab (building block of induction heads)
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Main Result

Masked

Hard-attention

Transformers
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Corollaries



Strictness

How does using strict vs non-strict

masking affect expressive power?
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Non-Strictness
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Strictness

Strict masking is more expressive
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Stutter-Invariant Star-Free Languages

Theorem

Masked hard-attention transformers with only non-strict masking

recognize exactly the stutter-invariant star-free languages.

For instance

• (ab)∗ is not stutter invariant

• (a∗b∗)∗ is stutter invariant
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Positional Embeddings

How do positional embeddings affect

expressive power?
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Positional Embeddings
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Positional Embeddings

Using sinusoidal position embeddings

is more expressive
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Transformers and Regular Languages in AC0

Theorem

Masked hard-attention transformers with rational sinusoidal

positional embeddings recognize exactly the regular languages in

AC0
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Depth

How does adding more layers affect

expressive power?
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Transformer Depth
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Depth

Adding more layers is more expressive
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Depth Hierarchy

Theorem

Masked hard-attention transformers with k + 1 layers are strictly

more expressive than masked hard-attention transformers with k

layers

It requires k + 1 layers to recognize the language STAIRk+1
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Parting Notes



Limitations

• Hard attention results may not apply to softmax attention

• We don’t consider autoregressive language modeling

• No claims on empirical learnability
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Takeaway

Formal language theory can quite

effectively explain the computational

behavior of masked-hard attention

transformers
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