



# STONE: A Submodular Optimization Framework for Active 3D Object Detection

Ruiyu Mao, Sarthak Kumar Maharana ,Rishabh K Iyer, Yunhui Guo

UT Dallas Erik Jonsson School of Engineering & Computer Science

# Introduction

- **3D** object detection is important [1, 2]
  - autonomous driving
  - $\circ$  robotics
  - VR/ AR application
  - Challenges [3, 4]
    - a dataset of significant scale
      - high cost of manual annotation



# **Introduction to Active Learning**

- Active learning [5]
  - A technique in machine learning where the learning algorithm selectively queries the most informative instances from the unlabeled data pool to have them labeled by an expert.
- Advantage [6]
  - This technique helps to reduce the **labeling cost** and enhance the accuracy of the model with a smaller amount of labeled data.



#### Active learning methods:

- Random
- Uncertainty [7]
- CORESET [8]
- BADGE [9]

### Background

#### • 3D Object Detection

- **Input**: Point Clouds (*LiDAR sensors*)
- 3D object detector
- **Output**:
  - Predicted Bounding box:
    - $\{b'_i\}_{i=1}^{N_i}$  spatial coordinates; box size; heading angle
  - Predicted Semantic Labels:
    - $\{c'_i\}_{i=1}^{N_i} \quad c'_i \in \{1, 2, \dots, C\}$





# Background

- Active Learning for 3D Object Detection
  - Step 1: Labeled small number of point clouds  $D_L$  randomly selected from  $D_U$ 
    - Initialize backbone 3D object detection model.
  - Step 2 (Retrain): Query Iteration  $q \in \{1, 2, \dots, Q\}$ 
    - Active learning method
      - select  $\Gamma$  number of unlabeled point clouds from  $D_U$
    - Human annotator for labeling
    - New selected point clouds training set:
      - $D_L = D_L \cup D_S$
  - Stop Active Learning:
    - query round Q is reached.
    - Budget:  $N_Q$  number of bounding box is used.



# Background

- Submodular Function and optimization
  - A set function f, in discrete  $f: 2^D \to \mathbb{R}$ 
    - $\quad \quad f(A)+f(B)\geq f(A\cup B)+f(A\cap B)$ 
      - $\forall A, B \subseteq D$
    - $f(A \cup \{x\}) f(A) \ge f(B \cup \{x\}) f(B)$ 
      - $\forall A, B \subseteq D, A \subseteq B \text{ and } x \notin B$
  - Property of diminishing return
  - f is strictly monotone if f(A) < f(B) for  $A \subseteq B$
  - Why choose Submodular Function:
    - Example: Shannon Entropy [10]
    - f is monotone submodular
      - NP-complete greedy approximation algorithm [11]
      - Faster than k-medoids approach

# **Challenges:**

#### • Various Difficulty levels

- Size, Occlusion Level, and Truncation of 3D Objects:
  - Eazy, Moderate, and Hard
  - Selected labeled point cloud data should include various difficulty levels.

#### • Imbalanced Data:

- Each 3D scene can contain multiple objects, leading to highly imbalanced label
   distributions in the certain point cloud
  - Include cars, but not cyclists or pedestrians





### **STONE:** An illustrative pipeline



### **STONE Algorithm Overview**

#### Revisiting Challenges

- Various Difficulty levels
  - representative and inclusive of various difficulty level (sample uncertainty [10])
    - Min absolute difference between  $f_1(D_U)$  and  $f_1(D_S)$ 
      - Since  $D_S \subset D_U$ 
        - $\square \max_{D_S \subset D_U} [f_1(D_S) f_1(D_U)]$
- Imbalanced Data (clustering-based [12, 13, 14])
  - Label distribution balancing
    - selected unlabeled point clouds  $D_S$  are added to the labeled set  $D_L$ 
      - label distribution quality not decrease

 $\max_{D_S \subset D_U} [f_1(D_S) - f_1(D_U)] + [f_2(D_L) - f_2(D_L \cup D_S)]$ 

#### **STONE:**

### Stage 1: Gradient-Based Submodular Subset Selection

### **GBSSS (Part 1)**

- Step 1: Input  $D_U$  into backbone model
  - MC-dropout [15] at detector head for each point cloud  $P_i$ 
    - Multiple regression and classification prediction [16]
      - Hypothetical label by average
      - Loss using hypothetical label as true label
        - backpropagation
          - gradients  $\nabla_{\boldsymbol{\theta}} \mathcal{L}_i$  from FC layer
- Step 2: After compute the gradient for each point cloud
  - Feature-based submodular function

• 
$$\max_{D_S \subset D_U, |D_S| = \Gamma_1} \sum_{P_i \in D_S} g\left(\mu(
abla_{ heta} \hat{L}_i)\right)$$

- $g(x) = \log(1+x)$  concavity
- $\mu(\cdot)$  is  $H(\nabla_{\theta} \mathcal{L})$  informativeness [17]



#### **STONE:**

#### **Stage 1: Gradient-Based Submodular Subset Selection**

- GBSSS (Part 2)
  - Dataset highly imbalanced
    - Gradients become biased and inaccurate (fewer classes) [23]
  - Loss Re-weighing Module
    - Regression Loss
      - Re-weighing Factor  $w_c = \frac{1}{n_c}$   $\tilde{w}_c = \frac{w_c}{\max(w_c)}$

 $\circ n_c$  number of bounding box of class C

• 
$$\hat{L}_{reg} = \frac{1}{C} \sum_{c=1}^{C} \tilde{w}_c \cdot L_{reg}^c$$

- Classification Loss
  - Rare classes penalize its distance to decision boundary (margin)

• Margin vector 
$$m_{i,c} = rac{1}{\sqrt{n_c}}$$

•  $\hat{L}_{cls} = L_{cls}(\hat{y}_i, f_i - m_i)$ 

$$\hat{L} = \hat{L}_{reg} + \hat{L}_{cls}$$

#### **STONE:**

### Stage 2: Submodular Diversity Maximization for Class Balancing

### • SDMCB

- Multiple Semantic Classes Single 3D scene
  - CRB [16], KECOR [18]
    - Partially Solve it
- Step 1: Balance individual point cloud

• 
$$H(P_i) = -\sum_{c=1}^{C} p_{i,c} \log p_{i,c}, \quad p_{i,c} = \frac{e^{n_c / N_i}}{\sum_{c=1}^{C} e^{n_c / N_i}}$$

• Step 2: Balance labeled point clouds

• 
$$H(P_i) = -\sum_{c=1}^{C} p_{i,c} \log p_{i,c}, \quad p_{i,c} = \frac{e^{n_c / N_i}}{\sum_{c=1}^{C} e^{n_c / N_i}}$$

#### **SDMCB**

Step 1 - Balance the label distribution of individual point cloud (Equation 6)



Select point clouds with the highest entropy values

Step 2 - Balance the label distributions of labeled point clouds (Equation 7)



### **Experimental Setup**

#### • Datasets

- KITTI Dataset [19]
  - 80, 256 labeled objects
  - cars, pedestrians, and cyclists
- Waymo Open Dataset
  - 158, 361 training samples
  - 40, 077 testing samples
  - 2 difficulty levels
- Baseline
  - Generic
    - Random, Entropy, COREST
  - SOTA
    - CRB
    - KECOR
- Evaluation Metrics
  - Average Precision (AP)
  - Bird Eye View (BEV)



# **Experiment Results**

- **KITTI Dataset** [19]
  - $\circ$  3D AP(%) scores with 1% queried bounding boxes
  - PV-RCNN [21] as the backbone
  - CRB
    - Eazy: **1.47%**, MODERATE: **0.84%**, Hard: **1.24%**
  - KECOR

• Eazy: **0.54%**, MODERATE: **0.08%**, Hard: **0.63%** 

|           | CAR   |       |       | Pedestrian |       |       | Cyclist |       |       | Average |       |       |
|-----------|-------|-------|-------|------------|-------|-------|---------|-------|-------|---------|-------|-------|
| Method    | EASY  | MOD.  | HARD  | EASY       | MOD.  | HARD  | EASY    | MOD.  | HARD  | EASY    | MOD.  | HARD  |
| CORESET   | 87.77 | 77.73 | 72.95 | 47.27      | 41.97 | 38.19 | 81.73   | 59.72 | 55.64 | 72.26   | 59.81 | 55.59 |
| BADGE     | 89.96 | 75.78 | 70.54 | 51.94      | 46.24 | 40.98 | 84.11   | 62.29 | 58.12 | 75.34   | 61.44 | 65.55 |
| LLAL      | 89.95 | 78.65 | 75.32 | 56.34      | 49.87 | 45.97 | 75.55   | 60.35 | 55.36 | 73.94   | 62.95 | 58.88 |
| MC-REG    | 88.85 | 76.21 | 73.47 | 35.82      | 31.81 | 29.79 | 73.98   | 55.23 | 51.85 | 66.21   | 54.41 | 51.70 |
| MC-MI     | 86.28 | 75.58 | 71.56 | 41.05      | 37.50 | 33.83 | 86.26   | 60.22 | 56.04 | 71.19   | 57.77 | 53.81 |
| CONSENSUS | 90.14 | 78.01 | 74.28 | 56.43      | 49.50 | 44.80 | 78.46   | 55.77 | 53.73 | 75.01   | 61.09 | 57.60 |
| LT/C      | 88.73 | 78.12 | 73.87 | 55.17      | 48.37 | 43.63 | 83.72   | 63.21 | 59.16 | 75.88   | 63.23 | 58.89 |
| CRB       | 90.98 | 79.02 | 74.04 | 64.17      | 54.80 | 50.82 | 86.96   | 67.45 | 63.56 | 80.70   | 67.81 | 62.81 |
| KECOR     | 91.71 | 79.56 | 74.05 | 65.37      | 57.33 | 51.56 | 87.80   | 69.13 | 64.65 | 81.63   | 68.67 | 63.42 |
| STONE     | 92.09 | 80.27 | 75.44 | 66.1       | 58.84 | 52.70 | 88.31   | 67.14 | 64.01 | 82.17   | 68.75 | 64.05 |

# **Experiment Results**

#### KITTI Dataset

- $\circ$  3D AP(%) scores with 1% queried bounding boxes
- SECOND [21] as the backbone (one stage) good generalization ability
- KECOR
  - 3D Detection Hard: **3.4%** mAP
  - BEV Detection Hard: 2.43% mAP

|         | 3D Det | ection avera | age mAP | BEV Detection average mAP |       |       |  |  |
|---------|--------|--------------|---------|---------------------------|-------|-------|--|--|
| Method  | EASY   | MOD.         | HARD    | EASY                      | MOD.  | HARD  |  |  |
| Random  | 66.33  | 55.48        | 51.53   | 75.66                     | 63.77 | 59.71 |  |  |
| CORESET | 66.86  | 53.22        | 48.97   | 73.08                     | 61.03 | 56.95 |  |  |
| LLAL    | 69.19  | 55.38        | 50.85   | 76.52                     | 63.25 | 59.07 |  |  |
| BADGE   | 69.92  | 55.60        | 51.23   | 76.07                     | 63.39 | 59.47 |  |  |
| BAIT    | 69.45  | 55.61        | 51.25   | 76.04                     | 63.49 | 53.40 |  |  |
| CRB     | 72.33  | 58.06        | 53.09   | 78.84                     | 65.82 | 61.25 |  |  |
| KECOR   | 74.05  | 60.38        | 55.34   | 80.00                     | 68.20 | 63.20 |  |  |
| STONE   | 76.86  | 64.04        | 58.75   | 82.14                     | 70.82 | 65.68 |  |  |

### **Experiment Results**



• Waymo Open Dataset [20] (left)

#### KITTI Dataset [19] (right)

- Regardless of the detection difficulty level
- STONE consistently surpasses other baseline methods

#### Citation

- [1] Deng, B., Qi, C.R., Najibi, M., Funkhouser, T., Zhou, Y., Anguelov, D.: Revisiting 3d object detection from an egocentric perspective. Advances in Neural Information Processing Systems 34, 26066–26079 (2021)
- [2] Wang, J., Lan, S., Gao, M., Davis, L.S.: Infofocus: 3d object detection for autonomous driving with dynamic information modeling. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16. pp. 405–420. Springer (2020)
- [3] Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding benchmark suite. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 567–576 (2015)
- [4] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2446–2454 (2020)
- ♦ [5] Dasgupta, S.: Two faces of active learning. Theoretical computer science 412(19), 1767–1781 (2011)
- [6] Settles, B.: Active learning literature survey (2009)
- [7] Sharma, Manali, and Mustafa Bilgic. "Evidence-based uncertainty sampling for active learning." Data Mining and Knowledge Discovery 31 (2017): 164-202.
- [8] Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017)
- [9] Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671 (2019)
- [10] Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications review 5(1), 3–55 (2001)
- [11] Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM (JACM) 45(4), 634–652 (1998)

#### Citation

- [12] Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the twenty-first international conference on Machine learning. p. 79 (2004)
- [13] Wang, M., Min, F., Zhang, Z.H., Wu, Y.X.: Active learning through density clustering. Expert systems with applications 85, 305–317 (2017)
- [14] Bodó, Z., Minier, Z., Csató, L.: Active learning with clustering. In: Active Learning and Experimental Design workshop In conjunction with AISTATS 2010. pp. 127–139. JMLR Workshop and Conference Proceedings (2011)
- [15] Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: international conference on machine learning. pp. 1050–1059. PMLR (2016)
- [16] Luo, Y., Chen, Z., Wang, Z., Yu, X., Huang, Z., Baktashmotlagh, M.: Exploring active 3d object detection from a generalization perspective. In: The Eleventh International Conference on Learning Representations (2023)
- [17] Wei, K., Liu, Y., Kirchhoff, K., Bartels, C., Bilmes, J.: Submodular subset selection for largescale speech training data. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 3311–3315. IEEE (2014)
- [18] Luo, Y., Chen, Z., Fang, Z., Zhang, Z., Baktashmotlagh, M., Huang, Z.: Kecor: Kernel coding rate maximization for active 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 18279–18290 (2023)
- [19] Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012
   IEEE conference on computer vision and pattern recognition. pp. 3354–3361. IEEE (2012)
- [20] Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., et al.: Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 2446–2454 (2020)
- [21] Shi, S., Guo, C., Jiang, L., Wang, Z., Shi, J., Wang, X., Li, H.: Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10529–10538 (2020)
- [22] Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

1 8

### **Thank You**

Thank you for your time and attention during this presentation. We hope you found it informative and engaging!