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Introduction
• 3D object detection is important [1, 2]

○ autonomous driving 

○ robotics

○ VR/ AR application

• Challenges [3, 4]

○ a dataset of significant scale

■ high cost of manual annotation 
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Introduction to Active Learning 
• Active learning [5]

○ A technique in machine learning where the learning algorithm selectively 

queries the most informative instances from the unlabeled data pool to have 

them labeled by an expert. 

• Advantage [6]

○ This technique helps to reduce  the labeling cost and enhance the accuracy of 

the model with a smaller amount of labeled data.

Active learning methods:
• Random

• Uncertainty [7]

• CORESET [8]

• BADGE [9]
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Background

• 3D Object Detection
○ Input: Point Clouds (LiDAR sensors)

■  

○ 3D object detector

○ Output: 

■ Predicted Bounding box:

●                spatial coordinates; box size; heading angle

■ Predicted Semantic Labels:

●               

○     represents the number of bounding box in the i-th point cloud         
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Background

• Active Learning for 3D Object Detection
○ Step 1: Labeled small number of point clouds        randomly selected from

■ Initialize backbone 3D object detection model.

○ Step 2 (Retrain): Query Iteration

■ Active learning method

● select      number of unlabeled point clouds from

■ Human annotator for labeling

■ New selected point clouds training set:

●     

○ Stop Active Learning:

■ query round Q is reached. 

■ Budget:       number of bounding box is used. 
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Background

• Submodular Function and optimization
○ A set function f, in discrete space

■

●

■

●

○ Property of diminishing return

○ f is strictly monotone if

○ Why choose Submodular Function:

■ Example: Shannon Entropy [10]

■ f is monotone submodular

● NP-complete greedy approximation algorithm [11]

● Faster than k-medoids approach
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Challenges: 
• Various Difficulty levels

○ Size, Occlusion Level, and Truncation of 3D Objects:

■ Eazy, Moderate, and Hard 

■ Selected labeled point cloud data should include various difficulty levels.

• Imbalanced Data:

○ Each 3D scene can contain multiple objects, leading to highly imbalanced label 

distributions in the certain point cloud

■ Include cars, but not cyclists or pedestrians
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STONE: An illustrative pipeline 
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STONE Algorithm Overview

• Revisiting Challenges
○ Various Difficulty levels

■ representative and inclusive of various difficulty level (sample uncertainty [10])

● Min absolute difference between                and 

○ Since 

■

○ Imbalanced Data (clustering-based [12, 13, 14])

■ Label distribution balancing

● selected unlabeled point clouds         are added to the labeled set

○ label distribution quality not decrease  
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STONE: 
Stage 1: Gradient-Based Submodular Subset Selection

• GBSSS (Part 1)
○ Step 1: Input         into backbone model

■ MC-dropout [15] at detector head for each point cloud

● Multiple regression and classification prediction [16]

○ Hypothetical label by average

○ Loss using hypothetical label as true label

■ backpropagation

● gradients               from FC layer

○ Step 2: After compute the gradient for each point cloud

■ Feature-based submodular function

●

●                          concavity

●         is               informativeness [17]             
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STONE: 
Stage 1: Gradient-Based Submodular Subset Selection

• GBSSS (Part 2)
○ Dataset highly imbalanced

■ Gradients become biased and inaccurate (fewer classes) [23]

○ Loss Re-weighing Module

■ Regression Loss 

●   Re-weighing Factor                     

○    number of bounding box of class C 

●

■ Classification Loss

● Rare classes penalize its distance to decision boundary (margin)

○ Margin vector 

●



1
2

STONE: 
Stage 2: Submodular Diversity Maximization for Class Balancing 

• SDMCB
○ Multiple Semantic Classes Single 3D scene

■ CRB [16], KECOR [18]

● Partially Solve it

○ Step 1: Balance individual point cloud

●  

○ Step 2: Balance labeled point clouds

●  
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Experimental Setup
• Datasets

○ KITTI Dataset [19]

■ 80, 256 labeled objects

■ cars, pedestrians, and cyclists

○ Waymo Open Dataset

■ 158, 361 training samples

■ 40, 077 testing samples

■ 2 difficulty levels

• Baseline

○ Generic

■ Random, Entropy, COREST

○ SOTA

■ CRB

■ KECOR

• Evaluation Metrics

○ Average Precision (AP)

○ Bird Eye View (BEV)
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Experiment Results
• KITTI Dataset [19]

○ 3D AP(%) scores with 1% queried bounding boxes

○ PV-RCNN [21] as the backbone

• CRB

○ Eazy: 1.47%, MODERATE: 0.84%, Hard: 1.24%

• KECOR

○ Eazy: 0.54%, MODERATE: 0.08%, Hard: 0.63%
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Experiment Results
• KITTI Dataset

○ 3D AP(%) scores with 1% queried bounding boxes

○ SECOND [21] as the backbone (one stage) good generalization ability

• KECOR

○ 3D Detection Hard: 3.4% mAP

○ BEV Detection Hard: 2.43% mAP 
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Experiment Results

• Waymo Open Dataset [20] (left)                           KITTI Dataset [19] (right)

○ Regardless of the detection difficulty level

○ STONE consistently surpasses other baseline methods
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Thank You

❖ Thank you for your time and attention during this 

presentation. We hope you found it informative and 

engaging!


