

Unsupervised Hierarchy-Agnostic Segmentation: Parsing Semantic Image Structure

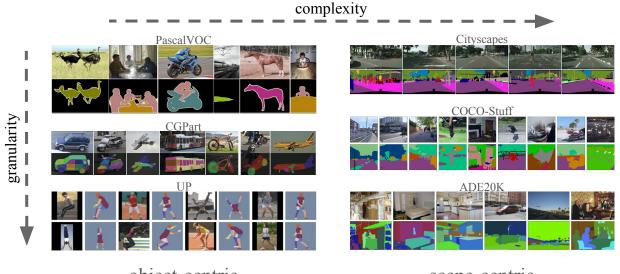
Simone Rossetti

Fiora Pirri

Motivation and Problem Statement

Challenge: Achieving unsupervised semantic segmentation that can parse complex image structures without external labels or dataset-specific priors.

Key Issue: Existing methods struggle with adapting to dataset-specific varying levels of granularity and often rely on assumptions that limit their generalizability.



object-centric

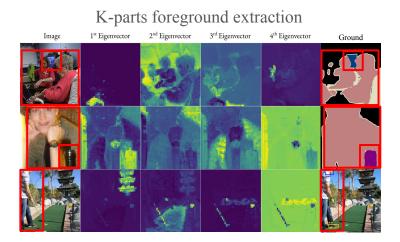
scene-centric

semantic segmentation datasets differs in semantic granularity and data complexity

• Non-foreground is missed while some foreground objects are merged

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals, Van Gansbeke W. et al., ICCV 2021.

• Some parts are missed and some other are merged

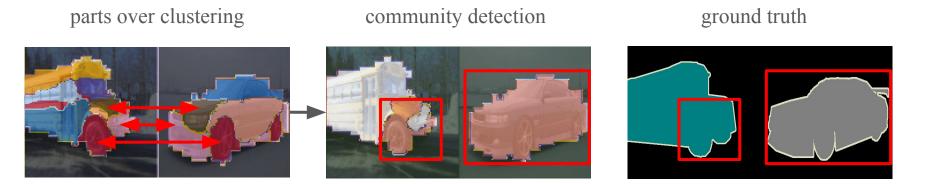


Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised Semantic Segmentation and Localization, Melas-Kyriazi L. et al., CVPR 2022.

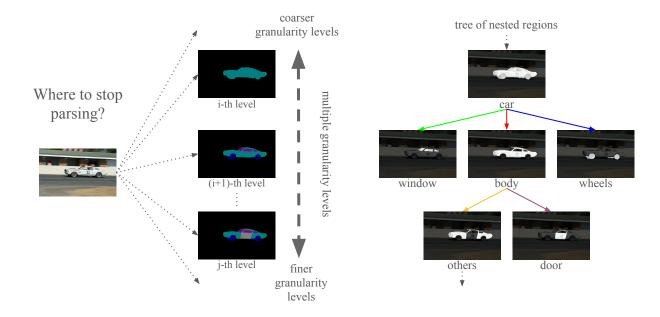
• Same objects with hidden parts are mistakenly divided into more categories

Self-Supervised Learning of Object Parts for Semantic Segmentation, Ziegler A. and Asano Y. M., CVPR 2022.

• Objects that share many parts are mistakenly merged to one category



Self-Supervised Learning of Object Parts for Semantic Segmentation, Ziegler A. and Asano Y. M., CVPR 2022.



semantics naturally has different levels of granularity

Main Contributions

- 1. **Innovative Clustering Method:** Introduction of recursive deep spectral clustering that discerns semantic regions across *multiple granularity levels* without *predefined hierarchies*.
- 2. **New Evaluation Metrics:** Proposal of *Normalized Multigranular Covering* (NMCovering) and *Normalized Hierarchical Covering* (NHCovering) to benchmark segmentation quality and hierarchy consistency.
- 3. **Broad Applicability:** Demonstrates versatility when integrated into different self-supervised models, performing well across diverse datasets.

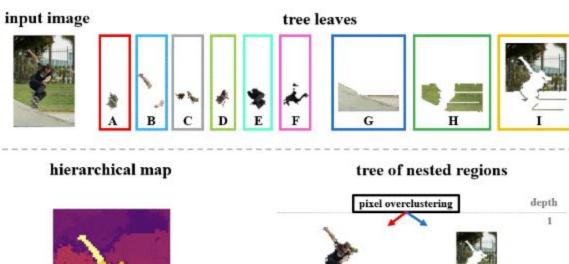
Method Overview

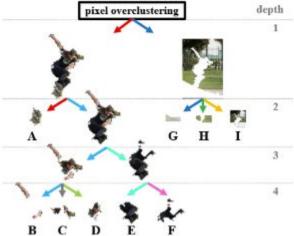
Graph Representation: We represent images as weighted undirected graphs using feature vectors from self-supervised models (e.g., DINO, CLIP) as nodes, with edge weights based on cosine similarity.

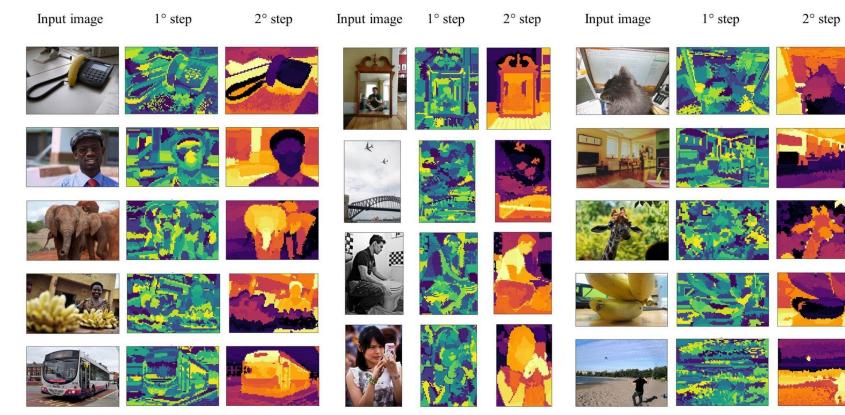
Recursive Clustering Strategy:

- Begins with coarse segments and recursively refines to finer details.
- Utilizes spectral clustering guided by perturbation theory to handle semantic inconsistencies.

Key Concept: The adjacency matrix's spectral properties are leveraged to partition graphs into semantically consistent subgraphs, refining the image into a *tree of nested regions*.







1° step: Coarse Semantic Parts Extraction

2° step: Fine Semantic Hierarchy Extraction

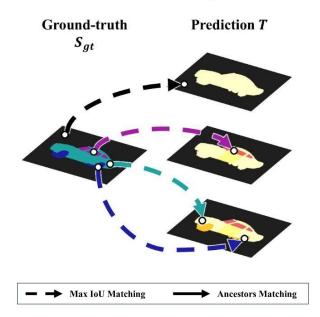
Evaluation of a granularity-agnostic grouping

Normalised Multigranular Covering (NMCovering):

- Image-level Jaccard's Index between:
 - Single-level granularity of ground-truth,
 - Multi-level granularity of prediction.
- Semantic lineage not available.

$$\operatorname{NMCovering}(T \to S_{gt}) \coloneqq \frac{1}{|S_{gt}|} \sum_{R \in S_{gt}} \max_{R' \in T} \frac{|R \cap R'|}{|R \cup R'|}$$

NMCovering



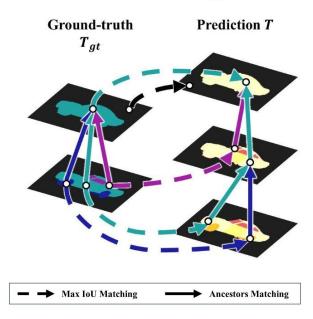
Evaluation of a hierarchy-agnostic grouping

Normalised Hierarchical Covering (NHCovering):

- Image-level Jaccard's Index between:
 - Multi-level granularity of ground-truth,
 - Multi-level granularity of prediction.
- Evaluate hierarchical coherence with no labels.

$$\begin{split} \mathrm{NHCovering}(T \to T_{gt}) &\coloneqq \frac{1}{|T_{gt}|} \sum_{R \in T_{gt}} \max_{R' \in T} \frac{|R \cap R'|}{|R \cup R'|} \cdot \frac{|\beta(R,T) \cap \pi(R')|}{|\pi(R)|} \\ & \text{where } \beta(R,T) \coloneqq \bigcup_{P \in \pi(R)} \argmax_{P' \in T} \frac{|P \cap P'|}{|P \cup P'|}. \end{split}$$

NHCovering



Experimental Validation

Datasets: Tested on diverse image sets including *PascalVOC2012*, *COCO-Stuff*, *Cityscapes*, and *PartImageNet*, covering both object- and scene-centric challenges.

Results:

- Demonstrated high performance with superior NMCovering and NHCovering scores, indicating effective multi-granular segmentation.
- Outperformed state-of-the-art unsupervised segmentation methods, showing adaptability and finer semantic decomposition.

Main Results

- Object- and scene-centric results;
- Whole- and part-centric results;
- Supervision strategy comparisons;
- Hierarchical clustering comparisons;

Table 1: **Granularity-agnostic.** Evaluation of our algorithm on different datasets using a maximum overlap heuristic for category matching.

Dataset	mIoU	pAcc	mAcc	floU	$\frac{\text{NMCovering}}{(T \to S_{qt})}$	
object-centric						
PascalVOC2012	78.1	82.6	91.2	78.1	75.4	
MSCOCO	55.7	93.1	85.0	78.8	49.6	
scene-centric						
COCO-Stuff	58.7	81.1	80.3	67.3	42.1	
Cityscapes	48.8	82.8	76.1	68.8	44.8	
KITTI-STEP	51.2	79.8	76.5	65.7	48.4	
Mapillary Vistas	47.6	78.9	72.1	66.1	42.7	
Potsdam	58.9	83.4	83.2	65.0	56.3	

Table 3: **Semantic segmentation.** Comparison on PascalVOC2012 *val.* Ours match unsupervised masks to best overlapping classes.

Table 2: **Hierarchy-agnostic.** Evaluation of our algorithm on different datasets using a maximum overlap heuristic for category matching.

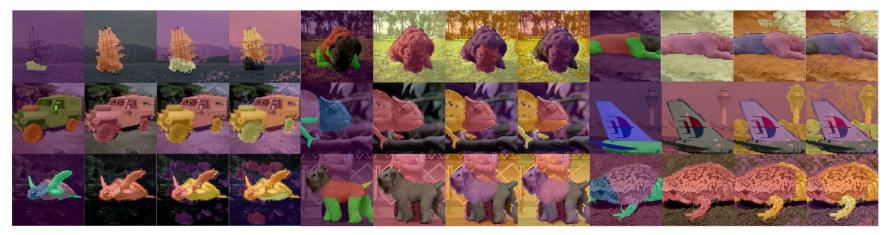
Dataset	mIoU	pAcc	$\begin{array}{c} \text{NMCovering} \\ (T \rightarrow T_{at}) \end{array}$	NHCovering	
whole-centric					
COCO-Stuff	59.5	75.1	53.5	42.9	
Cityscapes	53.7	78.8	51.1	43.8	
KITTI-STEP	58.3	79.6	54.2	46.5	
Mapillary Vistas					
part-centric					
Pascal-Part	25.8	80.0	39.5	38.8	
Part-Imagenet	55.4	79.5	65.8	65.2	
Part-Imagenet-158	59.5	82.6	67.8	63.1	

 Table 4: Boundary potential methods.
 All

 methods match unsupervised tree segments to
 best overlapping classes.

							NMCovering
		mIoU		PascalVOC2012	mIoU	J pAcc	$(T \to S_{gt})$
Method	Backbone	VOC12	MSCOCO	boundary potential			
fully-supervised				SE-OWT-UCM [24]	48.4	83.0	59.0
DeepLab-CRF [12]	ResNet-101	77.7	-	PMI-OWT-UCM [40]			61.3
DeepLab-CRF [12]	VGG-16	-	43.6 [10]	FINII-OW I-UCIVI [40]	47.0	00.5	01.5
DeepLabV3-JFT [13]	ResNet-101	82.7	-	semantic smoothness			
weakly-supervised				Ours w/o CRF	78.1	86.0	75.4
ViT-PCM [71]	ViT-B16	69.3	45.0	Ours w CRF	80.3	87.3	76.8
L2G [42]	ResNet-38	72.0	44.2	ours were	00.0	07.0	70.0
WeakTr [95]	DeiT-S	74.0	50.3				
un-supervised						MCovering	
Melas-Kyriazi et al. [58]	ViT-S16	37.2	-		mIoU	$(T \rightarrow T_{gt})$	NHCovering
Leopart [96]	ViT-S16	41.7	49.2	boundary potential			
HSG [44]	ResNet-50	41.9	-	SE-OWT-UCM [24]	30.7	43.0	32.9
Zhang et al. [94]	ResNet-50	43.5	-	PMI-OWT-UCM [40]	27.5	43.2	23.1
MaskDistill [79]	ResNet-50	48.9	-	semantic smoothness			
Ours w/o CRF	ViT-S8	$76.2 \pm .9$	$52.1 \pm .6$	Ours w/o CRF	58.7	53.5	42.1
Ours w CRF	ViT-B14	$\textbf{80.3} \pm 1.1$	56.5 ± .9	Ours w CRF	59.9	55.6	43.9

Parts 1st level 2nd level 3rd level Parts 1st level 2nd level 3rd level Parts 1st level 2nd level 3rd level



Conclusion and Future Work

Impact: This method provides a robust framework for unsupervised semantic segmentation, capable of uncovering rich, unbiased hierarchies in image data without relying on external labels or assumptions.

Applications: Suitable for use in autonomous driving, medical image analysis, and any field requiring detailed image parsing.

Future Directions:

- Adapt the method to instance and video segmentation.
- Optimize computational efficiency for real-time processing of larger input size.

Unsupervised Hierarchy-Agnostic Segmentation: Parsing Semantic Image Structure

Simone Rossetti

Fiora Pirri

