

Are Language Models Actually Useful for Time Series Forecasting?

Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, Thomas Hartvigsen

Unfortunately, Not Yet!

RQ1:Removing LLM's Backbone from Forecaster?

1. Forecast Performance Not Degraded, Even Improved

# Wins Parameters	Time-LLM 0 6651.82M	w/o LLM 12 0.55M	LLM2Attn 2 0.55M	LLM2Trsf 12 0.66M
# Wins Parameters	CALF 4 180.25M	w/o LLM 7 8.17M	LLM2Attn 4 10.5M	LLM2Trsf 11 13.68M
# Wins Parameters	OneFitsAll 7 91.36M	w/o LLM 11 9.38M	LLM2Attn 3 10.71M	LLM2Trsf 5 13.54M

We evaluated on eight commonly used time series forecasting datasets, such as ETTh, Weather, and five other datasets, including NN5 and FRED-MD.

2. No Gains but Significantly Increased Inference Cost

3. Substantial Training Costs Increase (A100 GPU, Weather)

Method	Time-LLM # Param (M)	[(LLaMA))Time (min)#	OneFitsAl Param (M	l (GPT-2))Time (min)#	CALF (# Param (M	GPT-2))Time (min)
w/ LLM	6642	3003	86	152	180	12
w/o LLM	0.198	1.91	4	16	8	2.32
LLM2Attn	0.202	2.22	7	21	10	2.14
LLM2Trsf	0.336	2.38	10	24	13	1.89

RQ2:Training a LLM from Scratch?

Methods	Pre+FT (GPT-2)		woPre+FT		Pre+woFT		woPre+woFT	
	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
ETTh1	0.4312	0.4313	0.4284	0.4362	0.4267	0.4342	0.4365	0.4474
ETTh2	0.3838	0.3510	0.3839	0.3508	0.3830	0.3514	0.3872	0.3554
ETTm1	0.3910	0.3963	0.3933	0.4013	0.3898	0.3954	0.3949	0.4028
ETTm2	0.3230	0.2831	0.3221	0.2852	0.3221	0.2827	0.3224	0.2829
Illness	0.8691	1.6996	0.8523	1.6146	0.8742	1.6640	0.8663	1.6381
Weather	0.2737	0.2510	0.2760	0.2520	0.2771	0.2535	0.2776	0.2582
Traffic	0.2844	0.4438	0.2771	0.4409	0.2820	0.4446	0.2863	0.4483
Electricity	0.2660	0.1758	0.2597	0.1669	0.2635	0.1730	0.2663	0.1784
# Wins:		3	1	8	1	5	()

woPre+FT: GPT-2 and training it from scratch yielded better performance than pre-trained model. Pre+woFT: The frozen pre-trained GPT-2, when used as a projector, can be fitted by other MLP layers. **woPre+woFT**: The frozen GPT-2, serving as a random projector, was fitted by MLPs, showing a certain level of capability.

RQ3: LLMs have TS sequential dependencies?

Dataset	ETTh1				
Input Ablation	Sf-all.	Sf-half.	Ex-half	Masking	
Time-LLM	51.8%	5.6%	79.6%	32.5%	
w/o LLM	56.0%	4.5%	89.7%	39.5%	
LLM2Attn	53.8%	3.3%	92.2%	33.8%	
LLM2Trsf	50.3%	3.4%	89.2%	34.8%	
OneFitsAll	62.1%	6.1%	16.6%	31.3%	
w/o LLM	58.6%	6.1%	19.2%	36.1%	
LLM2Attn	68.5%	9.0%	15.0%	34.4%	
LLM2Trsf	58.0%	7.8%	12.6%	30.2%	
CALF	50.5%	9.6%	5.6%	8.5%	
w/o LLM	56.2%	12.1%	6.1%	10.4%	
LLM2Attn	51.9%	10.8%	5.8%	7.3%	
LLM2Trsf	50.3%	8.5%	5.5%	7.0%	

methods

Sf-All : Shuffle the whole time series. Sf-Half : Shuffle the first half of the series.

RQ4:LLMs help with few-shot learning?

Model	GPT-2	w/o LLM	LLM2Attn	LLM2Trsf
#Wins	2	10	0	2
Model	LLaMA	w/o LLM	LLM2Attn	LLM2Trsf
#Wins	8	7	0	1

To evaluate whether this is the case we trained models and their ablations on 10% of each dataset. The results indicate that our ablations can perform better than LLMs in few-shot scenarios.

RQ5:Simple models perform similarly with LLM

