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Introduction

Does the brain do backpropagation?
Weight transport problem

Weight transport problem of
backpropagation

Backpropagation (BP)
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Weight transport problem

Rumelhart, 1986

Feedback alignment:
A bio-plausible alternative

Feedback alignment (FA)
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Random and fixed feedback

Lillicrap, 2016

Backward

Forward
path

FA works,
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but its learning efficiency is poor

Accuracy

Learning curve
(BP vs. FA)

Slower learning

> Lower
BP accuracy

FA

Data training
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Introduction
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Spontaneous random activity before sensory expenence
Insights from developmental neuroscience

Spontaneous neural activity is observed in brain before sensory experience
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Martini et al., 2021

Can prenatal random activity
enhance learning efficiency?

Cheon et al., NeurlPS 2024



Methods 03

Pretraining with random noise
with feedback alignment without weight transport

Training neural network with random input and label

Random noise pretraining
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Results

Result 1

Weight alignment to synaptic feedback

Random noise pretraining
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Results 05

Result 2
Fast and accurate learning dunng subseqguent data training

Fast and accurate learning of random pretrained network Enhanced weight alignment
Accuracy across data training Weight alignment
Random  Data
: 1.0 - / (FA 120 7 Random . Data
noise  (MNIST) Bp w/ (FA) A b e .
] /o (FA m i

w/ random  FESEEss 08 e I_E
pretraining  [HcAM 3 N
LD B B O 06 - Convergence .
= speed )
&) 1.0 - ()
S 04 * [s)
@ O 091 o I S
= 2 S
w/o random 0.2 0.8 . 13
pretraining 0.7 2

0+ 1 T 1 T 1 T { T 1

0 5 10 15 20 25 0 25 50 75 100
Epochs Epochs

Cheon et al., NeurlPS 2024



Results 06

Result 2
Fast and accurate learning dunng subseqguent data training

Enhanced model performance across different image datasets and network depths
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Results

Result 3
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Random pretraining as pre-regulanzation for robust generalization

Pre-regularization for learning a low-rank solution

Singular value (SV) spectrum of weights

x1072

Untrained

Initializaton —— &

Random
noise

0 50 100
x1072

Random
pretrained

0 50 100
Sorted index

Dimensionality of

Data
training

>

learned feature
7 —

*
1
6_
X
(-
© O
2 5-
IS
()]
i
a1 ¢
3 1 1
w/ w/o

Test loss

0.75 -

0.5

0.25 -

0

w/0
w/

ID geneneralization

1

0.75

0.5

0.25

Training loss

USPS

Test accuracy

OOD geneneralization

0.2

w/ w/o

Cheon et al., NeurlPS 2024



Results

Result 4
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Random pretraining as meta-learning for task-agnostic fast learning

Random training enables meta-learning over tasks
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Takeaways 09

Summary

Random noise pretraining
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