
Pretraining with random noise


without weight transport
for fast and robust learning


Department of Brain and Cognitive Sciences

Korea Advanced Institute of Science and Technology

Jeonghwan Cheon, Sang Wang Lee & Se-Bum Paik



Introduction   Methods   Results   Takeaways 01

Cheon et al., NeurIPS 2024

Does the brain do backpropagation?
Weight transport problem
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Spontaneous random activity before sensory experience
Insights from developmental neuroscience
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Martini et al., 2021

Can prenatal random activity

enhance learning efficiency?
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Pretraining with random noise
with feedback alignment without weight transport

Cheon et al., NeurIPS 2024

Training neural network with random input and label
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Result 1
Weight alignment to synaptic feedback

Cheon et al., NeurIPS 2024

Alignment of forward and backward weights Random noise pretraining
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Result 2
Fast and accurate learning during subsequent data training

Cheon et al., NeurIPS 2024

Fast and accurate learning of random pretrained network Enhanced weight alignment
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Result 2
Fast and accurate learning during subsequent data training

Cheon et al., NeurIPS 2024

Enhanced model performance across different image datasets and network depths
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Result 3
Random pretraining as pre-regularization for robust generalization

Cheon et al., NeurIPS 2024
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Result 4
Random pretraining as meta-learning for task-agnostic fast learning

Cheon et al., NeurIPS 2024
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Summary

Cheon et al., NeurIPS 2024
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