

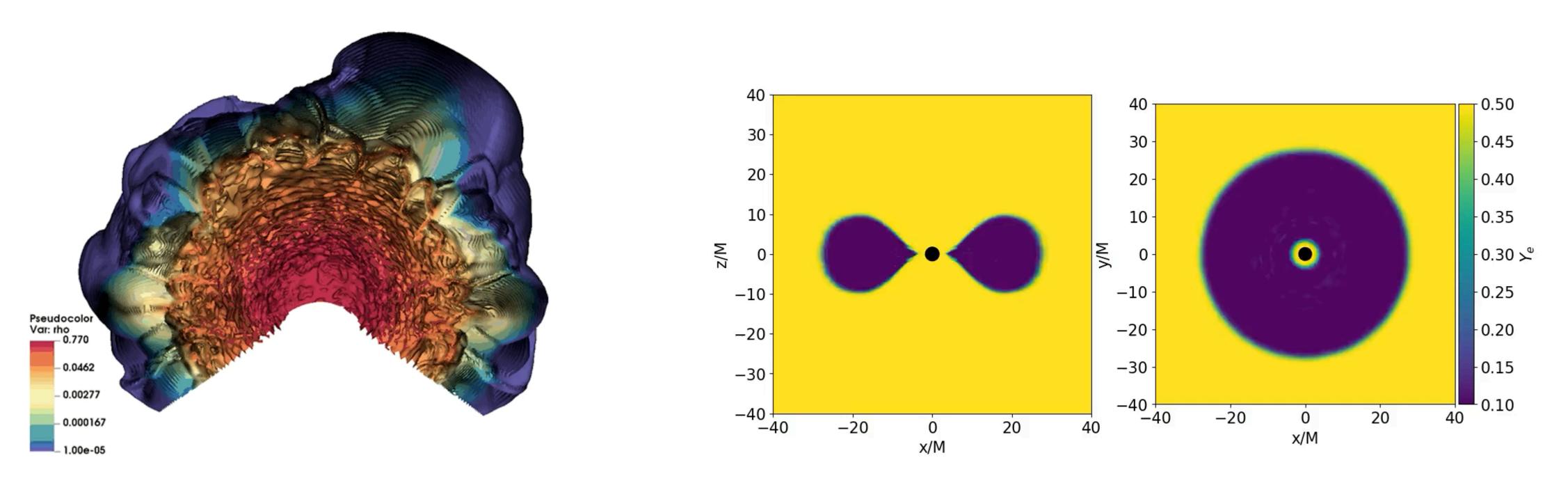
Multiple Physics Pretraining for Spatiotemporal Surrogate Models

Project led by Michael McCabe, Bruno Regaldo, Liam Parker, **Ruben Ohana, Miles Cranmer**

Polymathic

Where is machine learning useful for simulation?

Accelerating Simulation

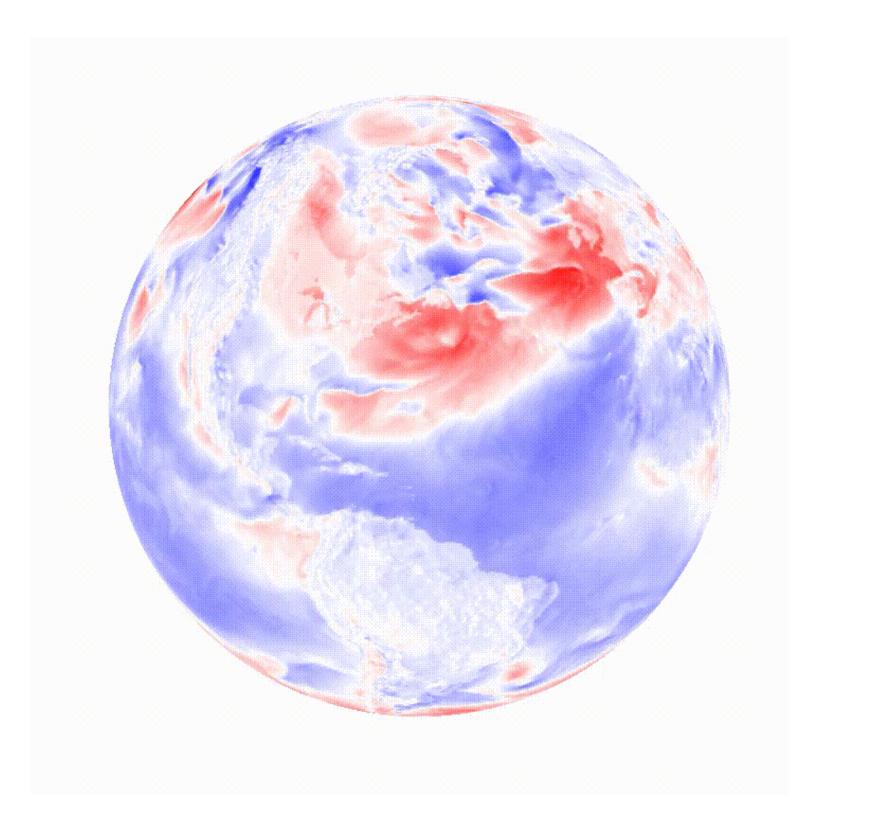


Goldberg, Jiang & Bildsten. 2021.

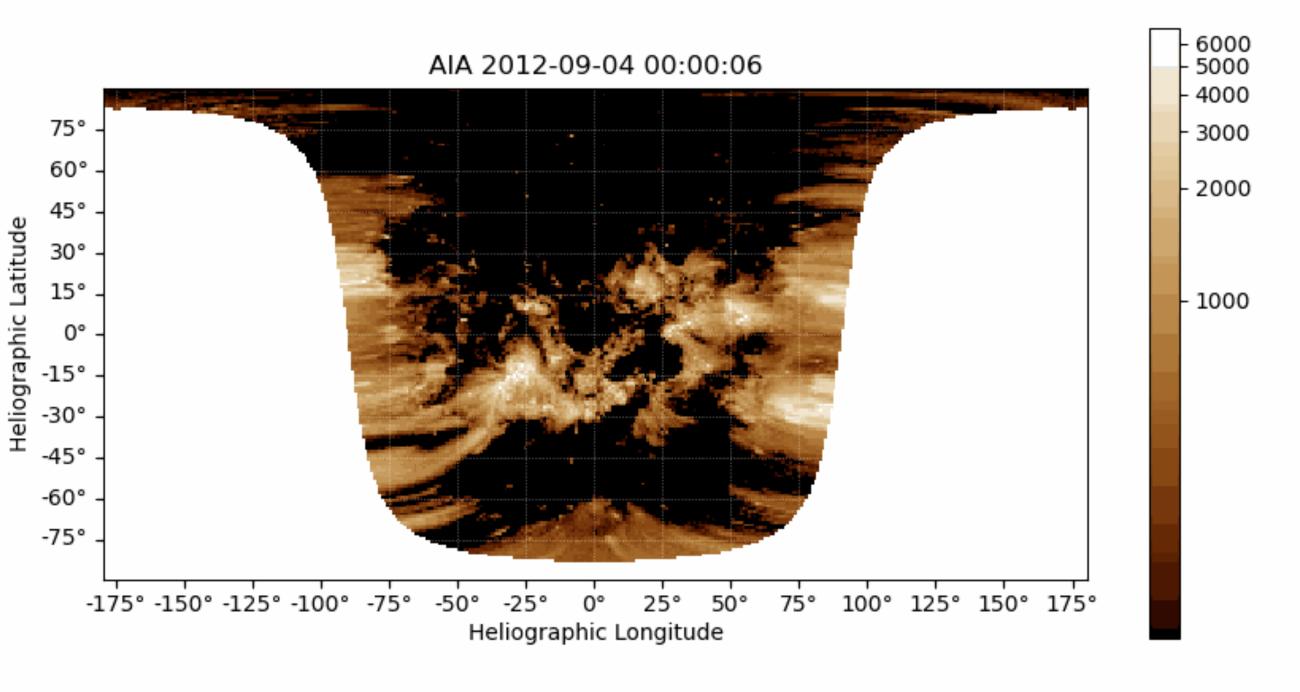
Miller et al., 2019.

Where is machine learning useful for simulation?

Poorly Specified or Imperfectly Observed Dynamics



The Earth



The Sun

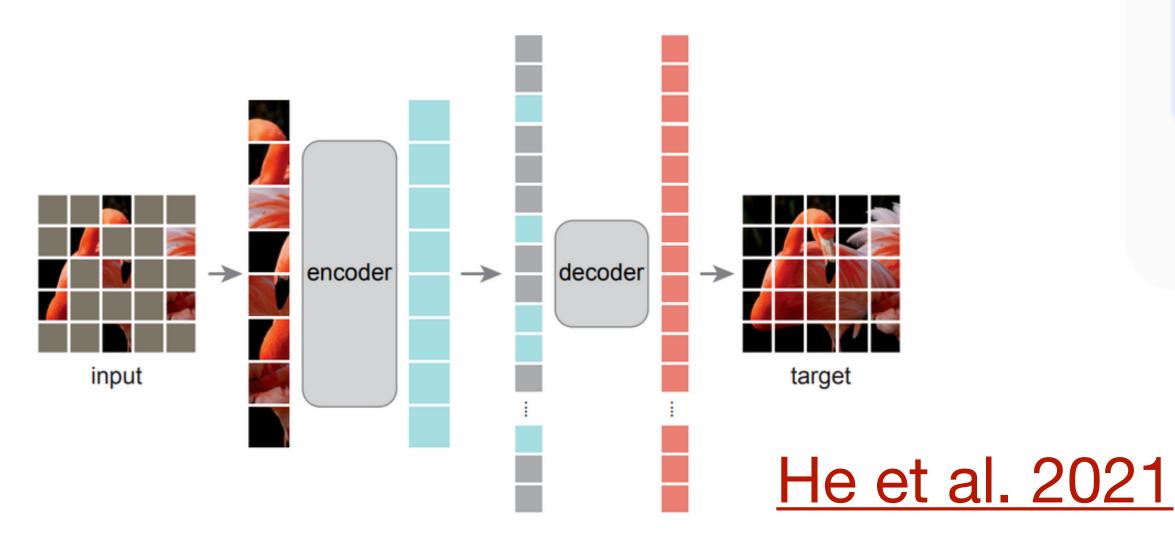
Both are settings where data will be inherently limited*

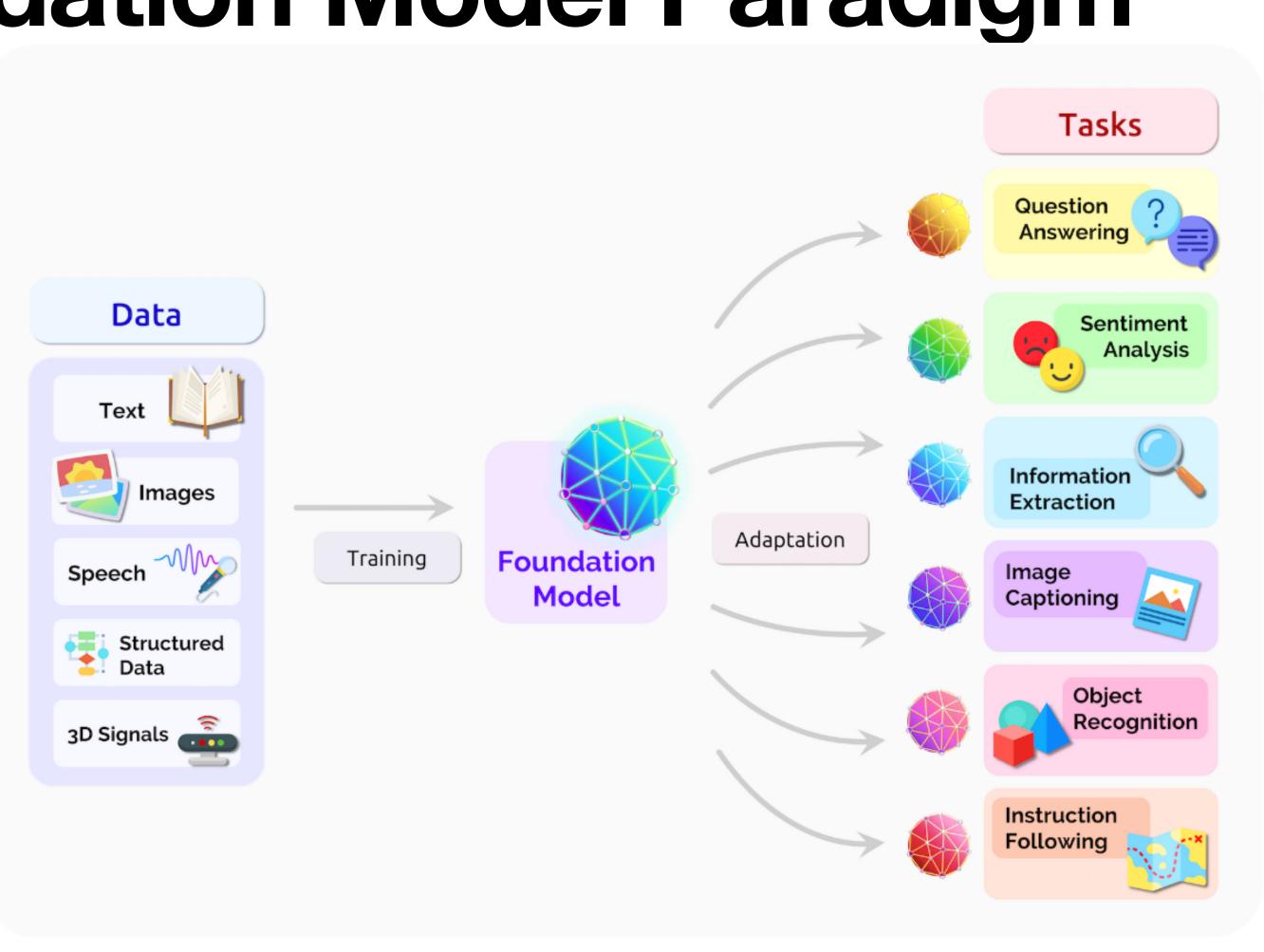
*Weather is an exception here

The Rise of the Foundation Model Paradigm

Foundation Model approach

- **Pretrain** models on objectives that do not require manual labeling to get access to very large datasets.
- Adapt pretrained models to downstream tasks.





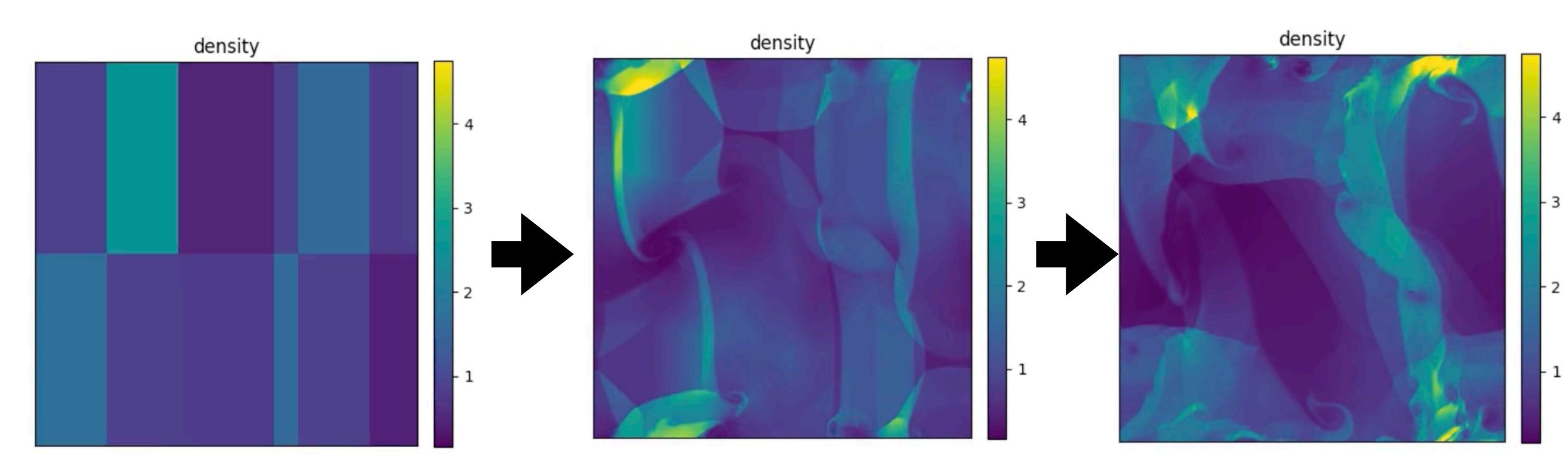
Bommansani et al. 2021

"Transferring" this approach to physical simulation **Key Questions**

- to new systems?
- 2. Is it possible to learn from sufficiently diverse physics to maximize our attack surface for transfer?

1. Does pretraining on partially overlapping physics help few-shot adaptation

What do we mean by physics in this case? Dynamics - The ability to estimate the evolution of a system given initial conditions



T=0

T=1

T=2

Scalar Transport - Compositional Systems

Advection:

Diffusion:

Advection-Diffusion:

$$\begin{aligned} \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (-\delta \nabla \psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi - \delta \nabla \psi) &= 0 \end{aligned}$$

0.

Simplified Example Scalar Transport - Compositional Systems

Advection:

Diffusion:

Advection-Diffusion:

$$\begin{aligned} \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (-\delta \nabla \psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi - \delta \nabla \psi) &= 0. \end{aligned}$$

- 1. Train on large amounts (100k) of advection and diffusion simulations.
- 2. Finetune on restricted advectiondiffusion data.

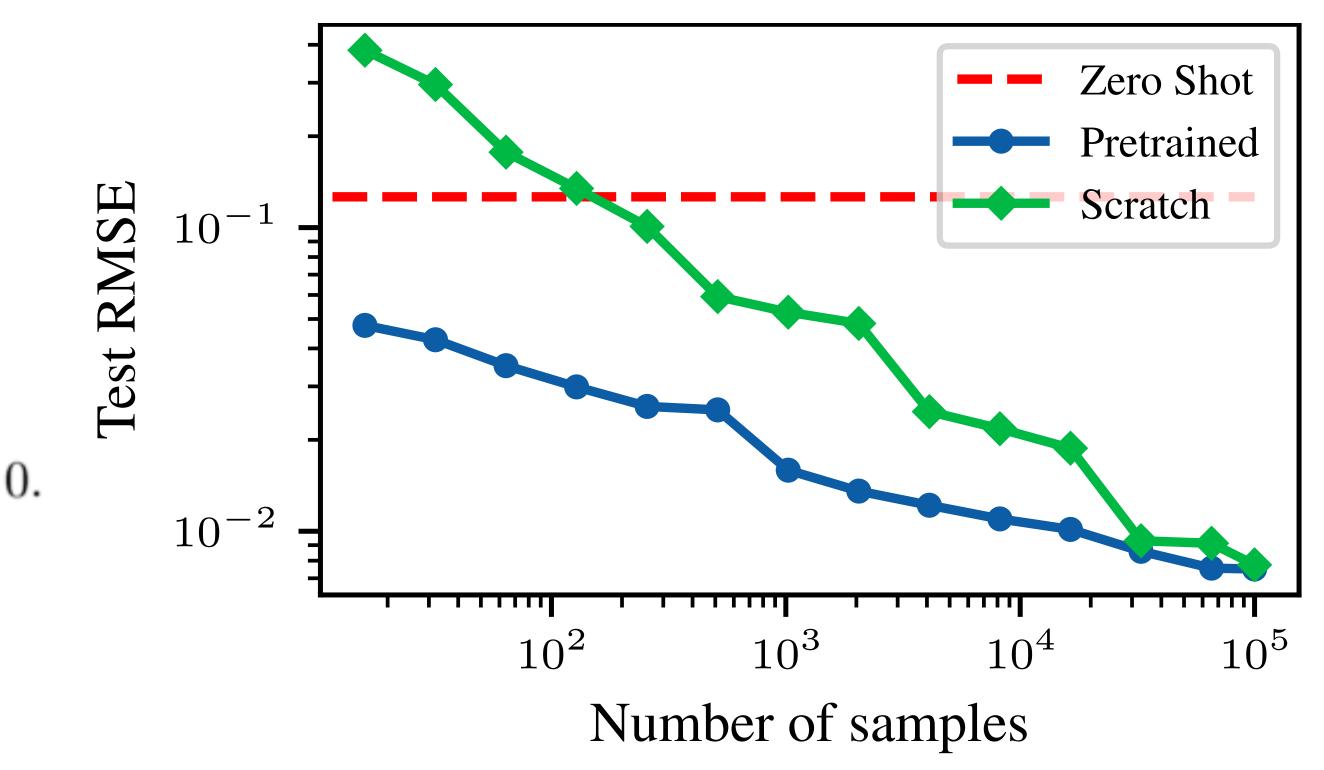
Scalar Transport - Compositional Systems

Advection:

Diffusion:

Advection-Diffusion:

$$\begin{aligned} \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (-\delta \nabla \psi) &= 0\\ \frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{v}\psi - \delta \nabla \psi) &= 0 \end{aligned}$$



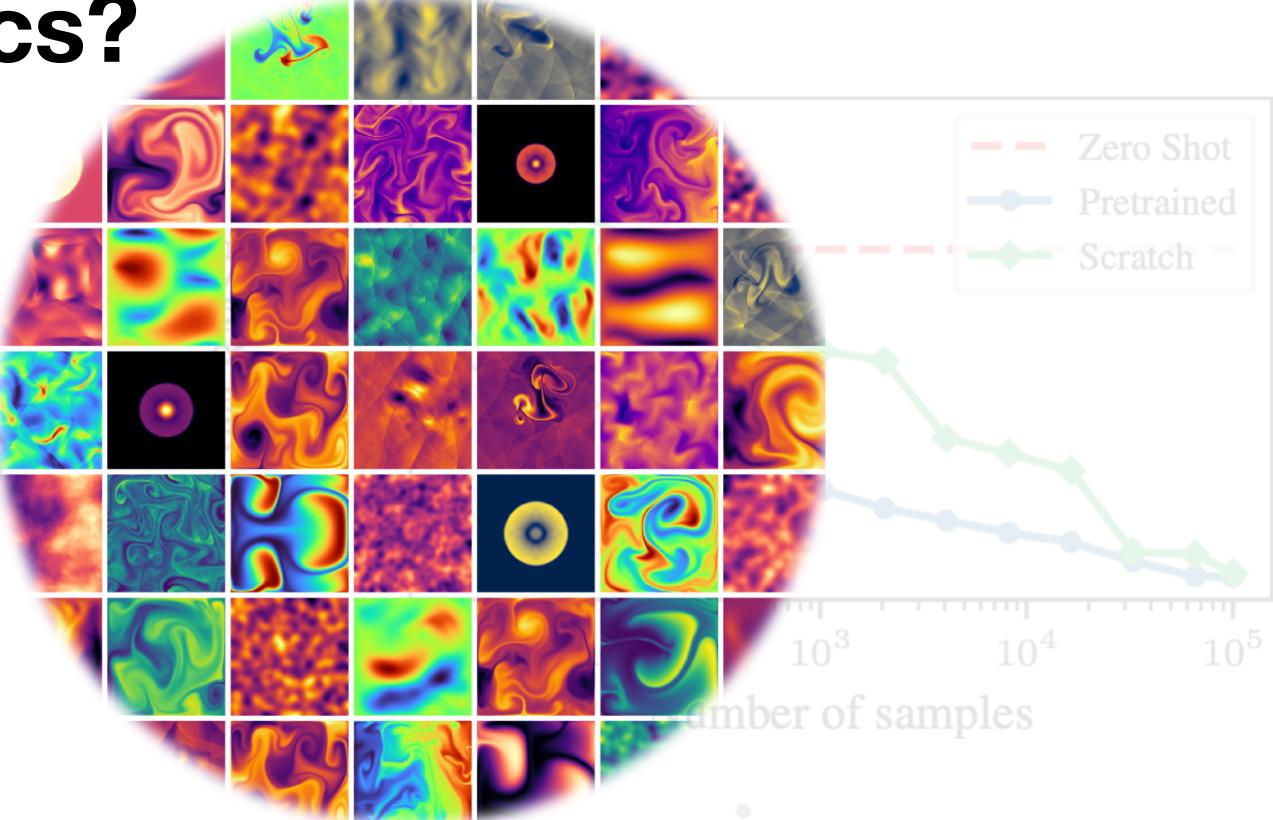
Simplified Example But how can we do this for complex, nonlinear dynamics?

Advection:

Diffusion:

Advection-Diffusion:

 $egin{aligned} &rac{\partial\psi}{\partial t}+
abla\cdot\left(v\psi
ight)=0\ &rac{\partial\psi}{\partial t}+
abla\cdot\left(-\delta
abla\psi
ight)=0\ &rac{\partial\psi}{\partial t}+
abla\cdot\left(v\psi-\delta
abla\psi
ight)=0 \end{aligned}$



Training Data PDEBench (Takamoto et al., 2022)

All 2D time-dependent problems:

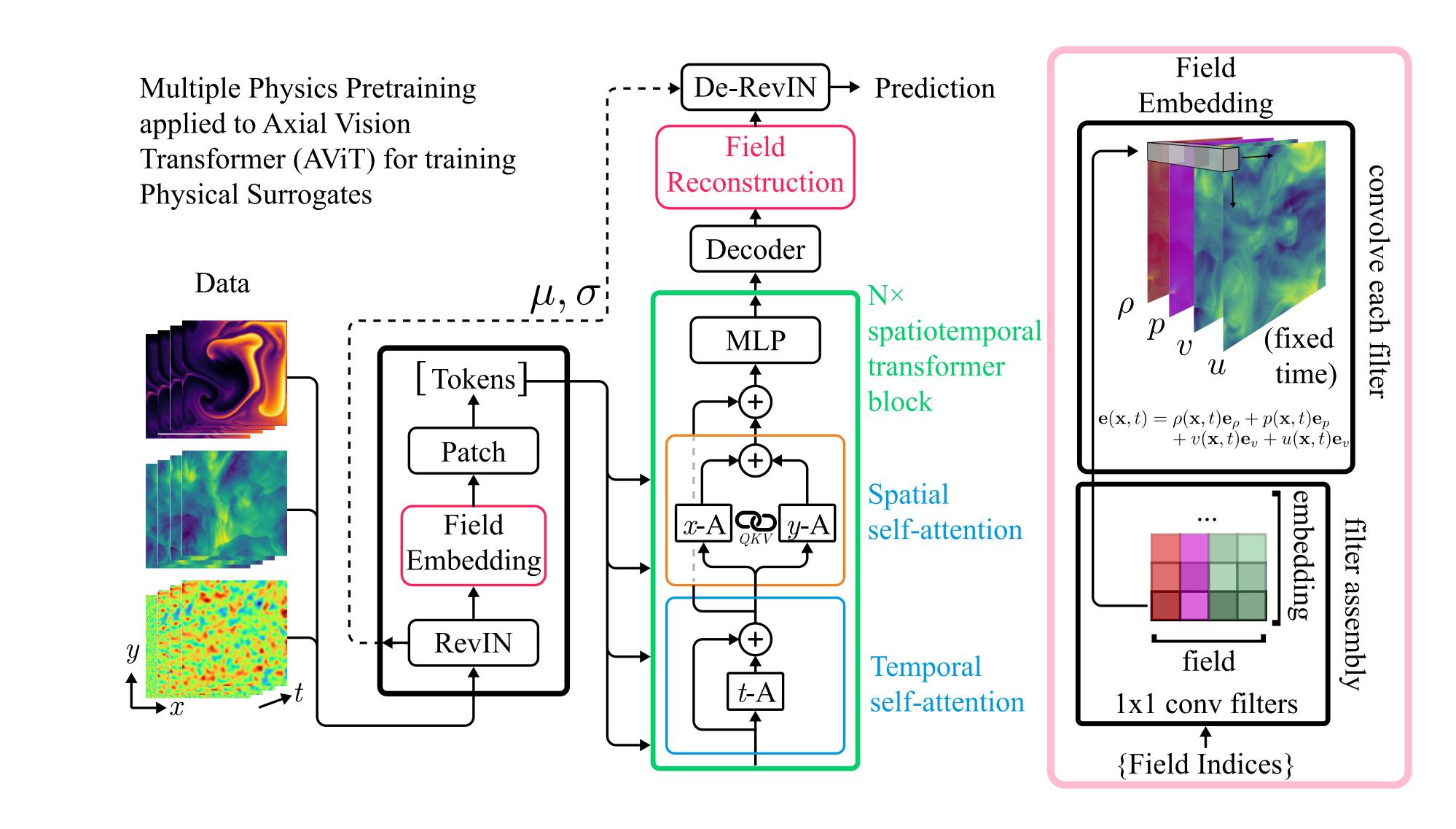
- 2D Diffusion-Reaction
 - BC No flow
- Shallow Water Equations (Dam Break)
 - BC Neuman
- Incompressible Navier-Stokes
 - BC Dirichlet
- Compressible Navier Stokes
 - BC Periodic

Sampled at variety of ICs and system parameters.



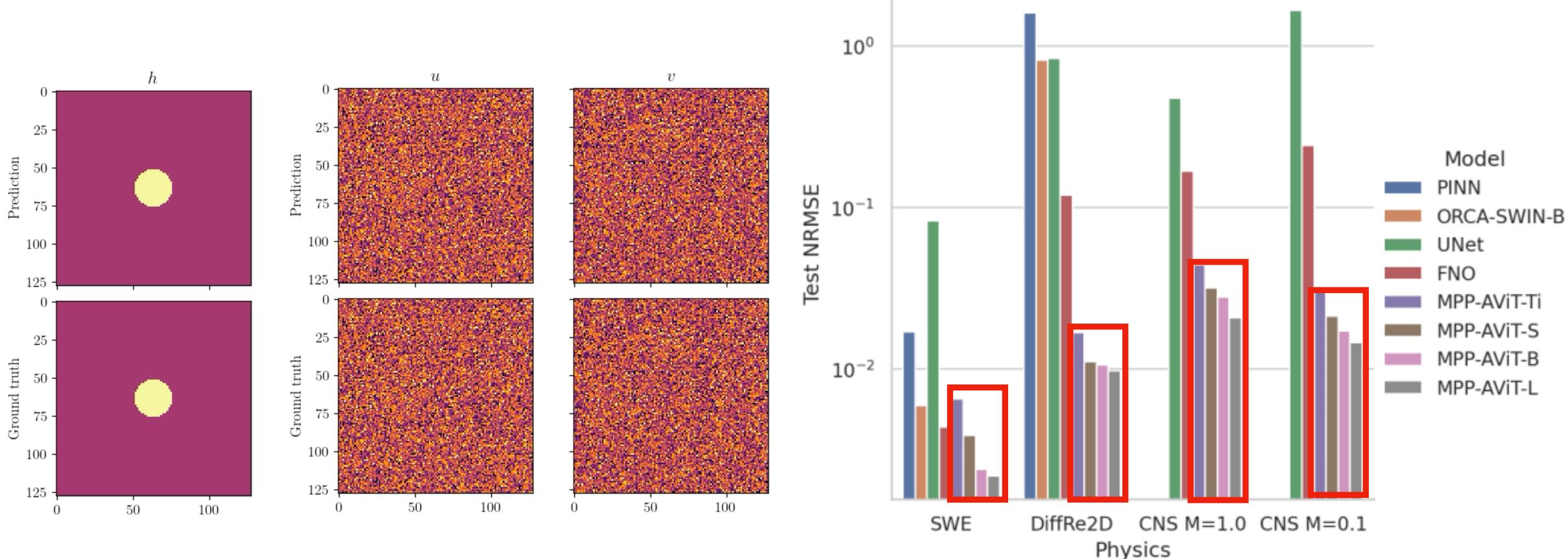
Data in image from PDEBench (Takamoto et al., 2022)

Multiple Physics Pretraining

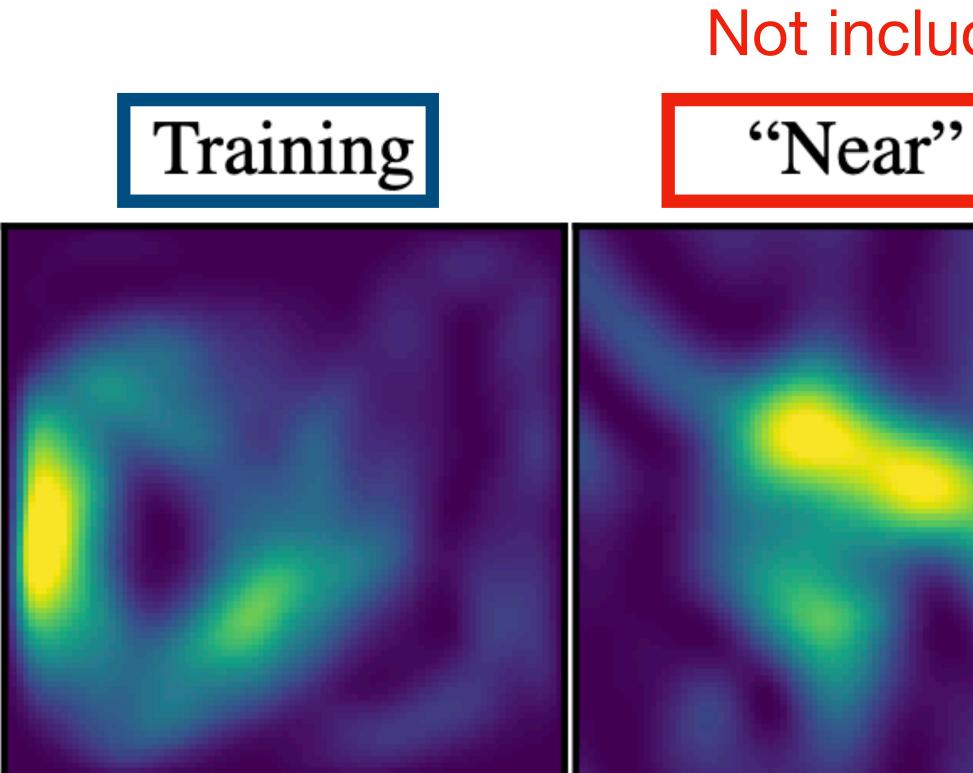


Pretraining Performance

Does pretraining learn useful representations?



Finetuning Performance Does pretraining accelerate the learning of new physics?



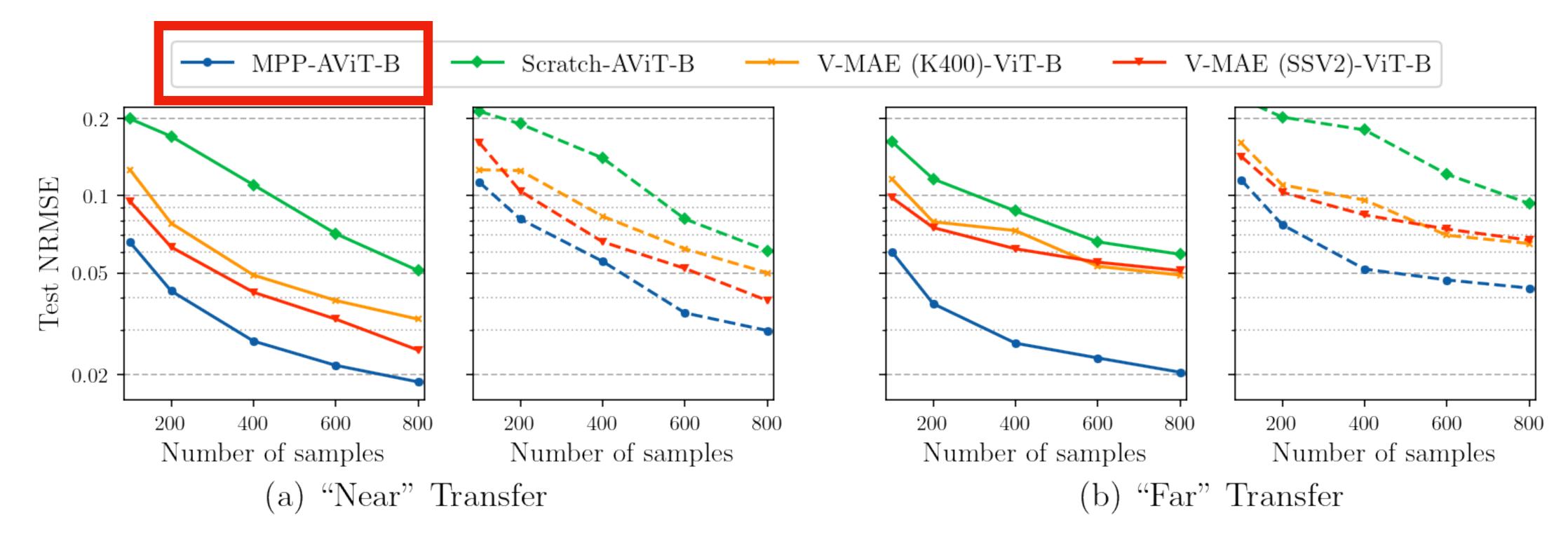
Incompressible Navier-Stokes Compressible Navier-Stokes Mach=0.1 Highly Diffusive

Not included in training data

ear" "Far"

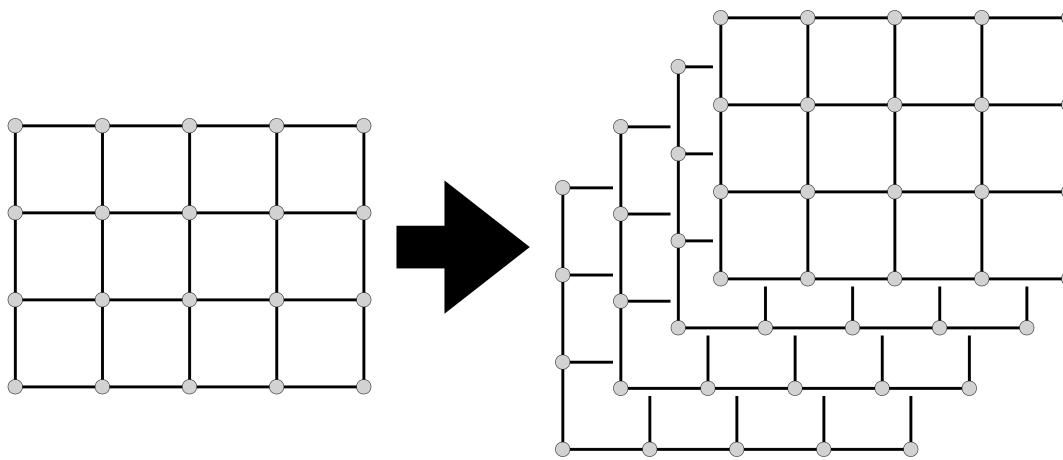
Compressible Navier-Stokes Mach=1.0 Nearly Inviscid

Finetuning Performance



Pretraining on physics data provides an enormous boost over training from scratch or even training on larger volumes of standard video data!

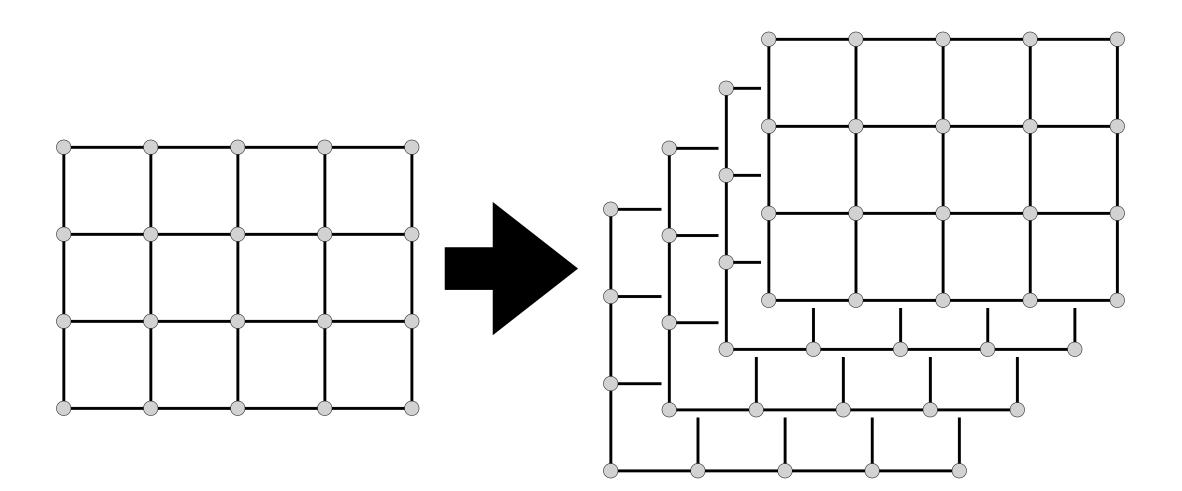
2D->3D Transfer **Kernel Inflation**



Pretrained 2D Kernel

Initialized **3D Kernel**

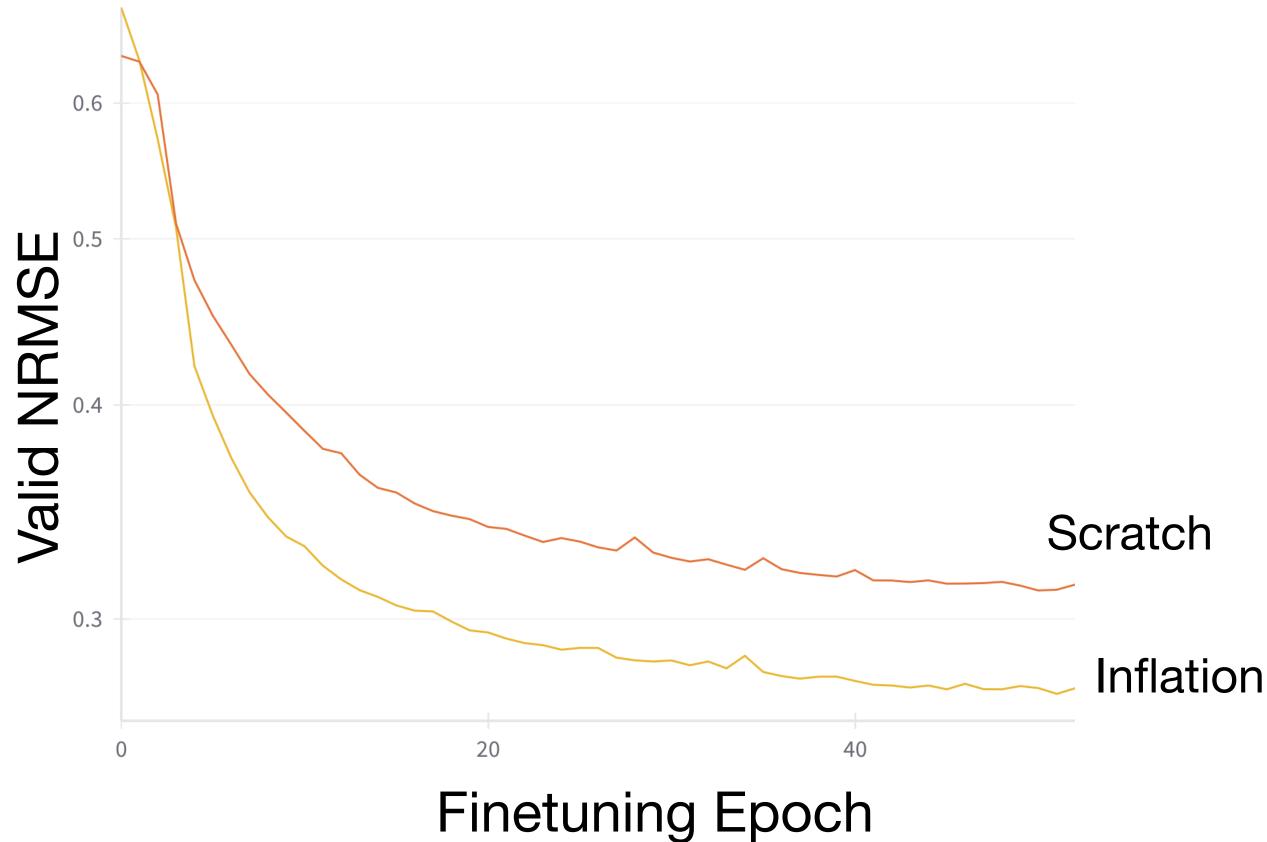
2D->3D Transfer **Kernel Inflation**



Pretrained **2D Kernel**

Initialized **3D Kernel**

3D Compressible Navier-Stokes



Please come visit us at our poster for more info! (or check out the links)

Code!

Paper!