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S @] mERENE Importance of Cardiac Motion Analysis

Figure 2 : Examples of Normal (Left) and Heart Failure (Right).

Figure 1 : Examples of Cardiac Motion Scanned via Echocardiogram [1].

: Cardiac motion analysis can help clinicians
Current medical imaging of the human heart will scan 1dentify many cardiovascular diseases, such as
cardiac structures and their motion such as valves, Heart Failure.

vessels, ventricle and atrium. '

[1] Cardiac Ultrasound (Echocardiography) Made Easy: Step-By-Step Guide, Vi Dinh, https://www.pocus101.com/cardiac-ultrasound-echocardiography-made-casy-step-by-step-guide/
The Thil‘ty—EiOhth Annual Conference on [2] https://en.wikipedia.org/wiki/Ebstein%27s_anomaly [3] https://journals.sagepub.com/doi/10.1177/2150135117692973
LT . ttps://cardiovascularultrasound.biomedcentral.com/articles/10. /1476- -6-32
Neural Inton:ntlon Processing Systems [4] htps./eard farul L i : les/ 10.1186/1476-7120-6-33
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Previous methods lack consideration of the motion dynamics and
spatial variability;

@ Previous methods often overlook the long-term relationships and regional
motion characteristic.

It 1s necessary to leverage temporal and spatial information for cardiac
motion tracking;

The Thirty-Eighth Annual Conference on 3
Neural Information Processing Systems



;r* LliJJ i The Observation of Cardiac Motion

*» PROCESSING
o9 SYSTEMS AND TECHNOLOGY

. . Frame 1 Frame 7 Frame 13 Frame 19 Frame 25
Right Atrium FFFFT™==H

Regions of Motion Trajectory Probability distributions
End-systole End-diastole Cardiac Across Time of Motion Trajectory

== Myocardium

‘e

Trjectoy
[]
]
']

Trujctay
|
>
8,
A o
c-...'
[

Regional Deformation Direction and Intensity Between Right Atrium and Myocardium

ST
‘§;

End-diastole  End-diastole  End-diastole 7 End-systole End-systole — , _
Cardiac Motion
"y A Y b/ / ’ 5 . * Trajectory Modelled
7 A A b4 A\ £ \./\ '\/ as Prior Knowledge
’, ’ Time via Gaussian Process.
End-systole End-systole End-diastole End-diastole End-diastole

Figure 3 : The motivation of regional motion analysis and formulate cardiac motion as prior knowledge via Gaussian Process

Regional Motions in Cardiac: Regions of the Right The. d;foirlnatmn .lfs, bi)lunded 0 tlhe °P actef of
Atrium (red) and Myocardium (green) performing the PEHIOCICATly SPECITIC UMal cardiac motion

opnosite traiectories durine the heartbeat cvele variation, which means we are able to formulate
pp J & yeie Cardiac Motion as a strong Prior Knowledge.
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Motivations Our Solutions

* Pervious studies focus only the global

* We employ the Gaussian Process (GP) to
understanding of cardiac motion;

promote temporal consistency and regional
variability incompact latent space,
establishing a robust regularizer to enhance
cardiac motion tracking accuracy;

* Deformation is bounded in the space of
periodically specific human cardiac motion
variation;

* GPTrack framework is designed to capture
the long-term relationship of cardiac motion
via a bidirectional recursive manner;

* Enabling both temporal and spatial
understanding for cardiac motion analysis.

The Thirty-Eighth Annual Conference on
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This framework employs the Gaussian Process (GP) to promote temporal consistency
and regional variability incompact latent space, establishing a robust regularizer to
enhance cardiac motion tracking accuracy.
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(a). Our GPTrack Framework (b). Conventional Registration Framework

1. GPTrack allows the registration network to aggregate the spatial information temporally, both forward and backward.
2. GPTrack considering the motion consistency between two adjacent state space

The Thirty-Eighth Annual Conference on
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Xy GPTrack Pipeline

..................................... p—

Layer

The GPTrack layer consists of
two independent GPTrack cells —C{GPTrack Cell)
that respond to forward and h, s f
backward computation. S AN L

R < B I

Temporal Positional |
Encodin
g Decoder > ¢

With the recursive manner, our GPTrack is able to formulate the
variable temporal information while maintaining the comparable
computational cost.

The Thirty-Eighth Annual Conference on
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The current input x* and hidden state Et—l followed by the addition of learnable position encoding pos; €

R? %€ are respectively normalized by Layer Normalization LN(-). The linear self-attention then computes the

E RPXC

attentive weight A® of combined x¢ and ﬁt_l. The above operations can be formulated as follows:

Exponential Linear Units elu(-)

Ay = (6(Wak) + 1) (6(Wrlz) + 1) Wila: 2 = LN(2; 4 pos, JBLN(hy_1 +pos, )

Learnable Weight of Query, Key and Value Concatenation Operation

The Thirty-Eighth Annual Conference on
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The output feature ft and hidden state i_{t of the t-th moment 1s formulated as:

fi = FEN(LN(A; + LN(z; + pos.,)))

—

ht = At -+ LN(Et_l + pOSS)
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Initially, we define a covariance (kernel) function for the GP layer as depicted in the above figure.
We employ the isotropic and stationary Matern kernel to fulfil the required covariance function

structure. ol—v D (¢, 24—1) D(xzy Tt 1)
k(T 1) = O'F(U) (V2v ?l VWKL, (V2 ’ )

where v,0,l > 0 are the smoothness, magnitude and length scale parameters, K,, is the modified

Bessel function, and D (:,") denotes the distance metric between features of two consecutive

The Thirty-Eighth Annual Conference on motion fields.
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We regard the sequential output {f;}} = 1 of GPTrack as noise-corrupted versions of the ideal latent
space encodings, formulating the inference as the following GP regression model with noise
observations z;:

2z ~ GP (1u(pos,), s (pos,_1,pos,)) , fi =z + e, e ~ N(0,0%)

where o2 is the noise variance of the likelihood model set as the learnable parameter in GPTrack.

The Thirty-Eighth Annual Conference on
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Concretely, the Gaussian process corresponds to the following linear stochastic differential equation:

%z(t) = Az(t) + bw(t), f(t) =h'z(t) +e(t), e(t) ~N(0,0%),

with the solution as: ¢
z(t) = exp" A z(r) + / exp A bw(s)ds, Vr < t,

=h'z(t) +e(t), e(t) ~ N(0,0%),

The Thirty-Eighth Annual Conference on f( /)
Neural Information Processing Systems



SOV, & EEHEAS

}_, I';l\li%lIQQAIJI_ATION THE HONG KONG
“i PROCESSING llNJ UNIVERSITY OF SCIENCE

o9 SYSTEMS AND TECHNOLOGY

Then we can discretize the pervious solution and get its weakly equivalent state-space

GPTrack Cell )
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model of Equation as:
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Given the initial value zy ~ N (ug, o) with gy = 0and %, = diag( 6%/2,30%/1?), we can
sequentially calculate the posterior distribution using update criterion of Kalman filter for state
space model as:

[TAR S Y THEp 3 P it—ﬁI’T + g — @tzo@;{,
wo— o +k(fi—h'm), &« % -kh'g, t=1,...,T.
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The k; is the optimal Kalman gain at time t. The output of the GP layer in t-th moment thus
can be formulated as zZP = ReLU(k,z,). In the final, the t-th motion field 8, is obtained by

decoder from the zZF

- hTﬁt)a 3 Xy — kthTMta t=1,...,7,

Gaussian Process in Cardiac Motion Tracking
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The overall loss function L 1s formulated as:

T—1

t=1

a)

b)

Z [Lri(xe, Tr1) 01 (Lsm(Prir1) + Lom(Pry1:a)) + o Loe(ip1, 71 0 Pouy1) +as Lom (Pra41)],
c)

d)

where o7, a9 and ag are loss weights, and ®1,:1, 18 the motion field from state t1 to to.

Lz, x441) =

KL(g(zf

|Tt,Tt+1)||P(7t

Play; 1)) +KL(g(f

P\ wegr; 2| |p(2f

is the summation of forward and backward VAE losses with latent codmg 2&T
q and conditional distribution p, L,,. is the negative normalized local cross—correlation metric, and

The Thirty-Eighth Annual Conference on
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We use the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) to measure whether the motion
field is accurately estimated between the first frame and the following wrapped frames. We also use the Dice score to measure
the discrepancy between tracked and ground-truth cardiac segmentation

Table 1: The performance! of different registration methods in Cardiac-UDA dataset [17]. Results
were reported in structures (RV, RA, LV, LA) and the overall averaged Dice score (Avg. %).

2D Methods LV 1 RV T LA T RAT Avg. 1T [|J]—1]] det(Js) <0l PSNRT SSIM 1 |Times (s) | Params (M) | TFlops |
(256x256) Non-rigid Registration
LDDMM 6] 69.44469 70.61453 57.03+12 70.78453 69.22+52 13.12+41105 25.67+23.41 [26.45+427 76.44424| *177.9+423 - -
RDMM (8] 70.50473 71.12463 57.10+12 72.22460 70.84+63 5.102+1.067 8.602+6350 |26.80+26 76.92+419| *241.0+35 - -
ANTSs (SyN) [24] [73.51466 74.12457 60.49+14 74.69+46 73.71458 16.09+8031 40.06+2856 |27.96+24 76.52425| *156.4+4.1 - -
Deep Learning Based Registration
VM-SSD [10] 74.26+83 74.85+52 60.78+18 76.24+7.4 75.86+42 0.374+0021 0.262+0305 |29.01+25 75.894158] 0.011+00 0.118 0.010
VM-NCC [10] |74.04472 76.204+59 67.54+14 77.36+42 76.51+42 0.685+0052 0.905+1229 |28.53+25 75.77423] 0.011+00 0.118 0.010
SYMNet [36] 7521475 75.33+61 69.67+11 77.78+455 76.60+42 0.454+0048 0.631+0.108 |28.56+25 76.87420| 0.101+00 0.449 0.125
VM-DIF [9] 73.53475 76.37+s6 68.10+15 78.55+61 76.83+50 0.387+0066 0.437+0508 |28.80+22 76.87+18| 0.011+00 0.109 0.010
Ahn SS,etal. [31] [75.60476 77.24+63 T1.41+17 79.20469 77.04+43 3.107+1.156 2.664+0527 [29.86425 77.59+24| 0.017+00 7.783 0.851
DiffuseMorph [12] |77.02+60 80.45+55 72.50+12 80.81453 79.27+52 0.319+0043 0.339+0478 |29.48+20 77.02+25| 0.103+00 90.67 0.227
DeepTag [15, 16] |76.83+75 80.13+48 72.87+14 80.98+42 79.41+35 0.273+00s6 0.027+0022 |28.53+25 76.40+23| 0.011+00 0.107 0.010
GPTrack-M (Ours) |76.94476 81.72+64 73.13416 80.85+64 81.64428 0.286+0069 0.11940084 |31.28+20 78.22424| 0.013+00 0.467 0.015
GPTrack-L (Ours) |77.07480 82.57+71 73.11415 81.24+64 82.11+27 0.250+0.044 0.019+0.017 [31.57 420 78.7042.1| 0.016+00 5.161 0.041
GPTrack-XL (Ours)|78.51+79 82.48+60 73.43+12 81.20+59 82.37+27 0.279+00ss 0.027+0.023 |32.03+2.4 80.04+24| 0.026+00 7.536 0.053
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Syn [24] VM-SSD [10] VM-DIF [9] Ahn,S.S, et al. [33] DeepTag [15] Our GPTrack Ground Truth

Figure 4: The visualization in 3D Echocardiogram video of motion tracking error. We visualised
the last frame of trackmg result and ground truth from 32 consecutive frames in CardlacUDA I
Colours Red, Blue, | n and Orange denote cardiac structures RA, RV, L.V and LA, respectively.
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We use the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) to measure whether the motion
field is accurately estimated between the first frame and the following wrapped frames. We also use the Dice score to measure
the discrepancy between tracked and ground-truth cardiac segmentation

Table 2: The performance’ of different registration methods in ACDC [19] dataset. Results reported
in structures (RV, LV, Myo) and overall averaged Dice score (Avg. %).

3D Methods RV T LV*T Myo1 Avg. T [[J[-1]] det(Jy) <o)| PSNRT SSIM T |Times (s) | Params (M) | TFlops |
(128x128x%32) Non-rigid Registration
LDDMM [0] 73.614+s85 05.62485 56.44+13 7239413 451.8+1623 653543712 [ 31.20435 84.59+60| *15334s4 - -
RDMM [8] 76.43178 69.50+01 62.19+14 7551112 144216367 266.0+1653 | 31.66439 84.364s54| F1715+26 - -
ANTSs (SyN) [24] |75.30+74 66.92486 58.03+11 74.64+13 15.824230 57.26+3774 [ 30.92436 84.26+s56| *1166+16 - -
Deep Learning Based Registration
VM-SSD [10]] 79.83171 74274100 64.44415 77.56+12 3.14442242 4.602+43485 | 32.61437 83.88+s52| 0.015+00 0.327 0.767
VM-NCC [10] 81.60+6s 77.00+86 67.90+13 79.90+11 0.260+0070 0.079+00s8 | 34.68+33 85.01+s5| 0.015+00 0.327 0.767
VM-DIF [9] 81.50+66 75.50492 65.90+14 78.90+12 0.28640072 0.08310063 | 33.48435 8422451 0.015+00 0.327 0.767
SYMNet [36] 80.46+64 77.81494 66.22+14 79.47+13 0.341+0062 0.121400s54 [ 32.91435 83.55+49| 0.414+00 1.124 0.226
NICE-Trans [52] | 79.97+60 78.55481 67.02+11 79.66+10 0.278+0071 0.093+0044 | 33.08+30 83.88+47| 0.486+00 5.619 0.280
DiffuseMorph [12] | 82.10+67 78.30+86 67.80+15 80.50+11 0.237+006s 0.061+0038 | 34.73+36 84.30+s52| 0.458+00 0.327 0.642
CorrMLP [53] 80.33+65 80.07478 70.51+14 80.44+1s6 0.248+00s5 0.05940022 | 34.90420 84.27+45| 0.070+00 13.36 0.303
DeepTag [15, 16] |81.894+70 79.10+75 70.37+13 80.83+12 0.185+0067 0.044 10025 | 33.64434 83.09+49| 0.015+00 0.362 0.113
Transmatch [54] |81.22+70 80341638 71.21+12 81.35208 0.226+00s0 0.0771+o00sa 33.89133 84.78+49 0.325+00 70.71 0.603
FSDiffReg [11] 82.70+61 80.90477 72.40+12 82.30+196 0.214+00s4 0.05430026 | 35.34435 85.85+4s52| 1.106+00 1.320 0.855
GPTrack-M (Ours) | 81.65+70 80.77+7s 71.53+16 81.45+10 0.209+0081 0.047+o0035 | 34.82432 85.78+s3| 0.022+00 0418 0.201
GPTrack-L (Ours) | 82.78+s56 81.16468 71.71+14 82.38+n1 0.182+0072 0.035+0022 | 34.99+30 85.62+40| 0.023+00 0.942 0.204
GPTrack-XL (Ours) | 8291455 81.23482 72.86+90 82.65+10 0.178=x0.024 0.032+0.021 | 35.52431 86.19+50 | 0.034+00 1.094 0.205

The Thirty-Eighth Annual Conference on
Neural Information Processing Systems



‘r:‘ < sxaers  Visualization of Cardiac Motion Tracking in ACDC

.-;., ,INFORMATION
*s PROCESSING lﬂJ UNIVERSITY OF SCIENCE
o9 SYSTEMS AND TECHNOLOGY

Syn [24] VM-SSD [10] VM-DIF [9] DiffuseMorph [12] DeepTag [15] FSDiffReg [11] QOur GPTrack Ground Truth

Figure 5: The visualization in 4D Cardiac MRI of motion tracking error. We visualised the result of
the last frame tracking from ED to ES and corresponding ground truth in ACDC [17]. Colours Red,
Blue, and Green denote cardiac structures MYO, LA, and LV, respectively.
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» We highlights the cardiac motion trajectory that follows a certain pattern
can be modelled as prior knowledge via the Gaussian Process.

» We capture the long-term relationship of cardiac motion via a bidirectional
recursive manner, mimics the workflows of the classical diffeomorphic
registration framework.

» Our framework achieves state-of-the-art performance on both 3D
Echocardiogram videos and 4D temporal MRI datasets, maintaining
comparable computational efficiency.
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Thank You!

Code & data: https://github.com/xmed-lab/GPTrack

Jiewen Yang - jyangcu@connect.ust.hk
Xiaomeng Li - eexmli@ust.hk
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