Genetic-guided GFlowNets for Sample Efficient Molecular Optimization

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, Jinkyoo Park Korea Advanced Institute of Science and Technology (KAIST)

Summary

TL;DR. Our method enhances the sample-efficiency in molecular optimization by **distilling a powerful genetic algorithm** into deep generative policy using **GFlowNets training**.

Key ideas

- A factorized string-based generative policy
- **Exploration with graph-based genetic algorithm for molecular design**
- Employ generative flow networks (GFlowNets) for off-policy training

Background

Sample-efficient Molecular Optimization

- *De novo* molecular design: generate a new molecule from scratch with the desired property
- Evaluating chemical or biological properties of a molecule is expensive (a black-box oracle function f)
- Combinatorially vast space with limited oracle budget ($\leq 10K$)

- GAs often outperform recent deep learning methods
- They iteratively evolve a population of candidates as follows:
	- 1. **Initialize a population**
	- 2. **Generate offspring**: A child is generated by *crossover* and *mutation* designed with expertise.
	- 3. **Select a new population** and go bact to 2.

Genetic algorithms for molecule design

Step 1: Factorized string-based generative policy and unsupervised pretraining. The probability $\pi_{\theta}(\mathbf{x}) = \prod_{t=1}^{n} \pi_{\theta}(x_t | x_1, \ldots, x_{t-1})$, where x_1, \ldots, x_n are characters of SMILES representation of x . The policy is pretrained on existing chemical datasets \mathcal{D}_{pre} :

Generative flow networks (GFlowNets)

- Sample a discrete compositional object $x \in \mathcal{X}$ proportional to its reward, i.e., $p(x) \propto R(x)$ 0 2000 4000 6000 8000 10000
- The forward policy P_F generates state transitions sequentially through trajectories $\tau=(s_0\rightarrow...\rightarrow s_{\mathcal{T}}=x)$
- Trajectory balance loss (Off-policy training)

$$
\mathcal{L}_{\mathsf{TB}}(\tau;\theta) = \left(\log \frac{Z_{\theta} \prod_{t=1}^{T} P_{\mathsf{F}}(s_t | s_{t-1}; \theta)}{R(x) \prod_{t=1}^{T} P_{\mathsf{B}}(s_{t-1} | s_t; \theta)} \right)^2 \tag{1}
$$

Genetic-guided GFlowNets

$$
\mathcal{L}_{pre}(\mathbf{x}) = -\sum_{t=1}^{n} \log \pi_{\theta}(x_t | x_1, \ldots, x_{t-1}). \tag{2}
$$

Step 2: Fine-tune the policy with genetic search

- a. Generates SMILES using the policy *π^θ* (**x**) and evaluate
- b. Select a population from the buffer based on the reward and generate offspring (graph-based crossover & mutation)
- c. Train the policy with a GFlowNet loss (+ KL penalty)

$$
\mathcal{L} = \mathcal{L}_{\text{TB}}(\tau; \theta) + \alpha \text{KL}(\pi_{\theta}(x)||\pi_{\text{pre}}(x)), \tag{3}
$$

where $R(\pmb{x})=e^{-\beta f(\pmb{x})}.$

Experimental Results (1)

Main results in the Practical Molecular Optimization (PMO) benchmark

Controllability of the scores-diversity trade-off

Experimental Results (2)

Results of 23 oracles in the PMO benchmark

Comparisons with GFlowNets variants

(a) Average and standard deviation of AUC scores (\uparrow)

(b) Search distances (\uparrow)

Designing SARS-CoV-2 Inhibitors

Goal: maximizing the binding affinity to the target protein + QED (Quantitative Estimate of Drug-likeness) and SA (Synthetic Accessibility)

Score: 0.909

Figure 4: The final candidates for the PLPr_7JIR target with 100 steps.

Figure 5: The final candidates for the RdRp_6YYT target with 100 steps.

Table 5: Average Top-100 scores (\uparrow). Ours outperforms baselines with 10 times fewer steps. The **bold** denotes the best scores.

