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Self Attention

Any-to-any interaction between all n input
tokens/pixels.
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Solution: Fused Attention

What if we don’t store attention weights, P , in
global memory in the first place?

FlashAttention
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Background: fused multi-headed attention (FMHA)

In 2021, NVIDIA prototyped a fused attention kernel (FMHA) for GPT inference.

Key limitation: softmax reduction blocks second matrix multiply.

Online softmax [2] showed how softmax can be computed partially, and reduced into exact full
softmax.

This was a major achievement, opening the door for distributed and highly parallel softmax
implementations.

In 2022, and inspired by the Apex FMHA, Dao et al. [1] proposed Flash Attention; a fused
attention kernel that accelerated existing BMM-style attention implementations, a key
component of which was online softmax.
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Background: fused multi-headed attention (FMHA)

Fused attention can fix two key bottlenecks at the
same time: attention is no longer bound by memory
bandwidth or memory capacity at scale.
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Background: fused multi-headed attention (FMHA)

Fused attention can fix two key bottlenecks at the
same time: attention is no longer bound by memory
bandwidth or memory capacity at scale.

Fused attention kernels operating with FP8
precision have already exceeded the petaFLOP/s
threshold on Hopper, and can achieve up to 60% of
peak FLOP/s [3, 4].
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Background: Local attention

Parallel to fused attention, some worked on
sparse/restricted self-attention patterns.
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Background: Neighborhood attention

This creates a spectrum of possible attention patterns between linear projection and self
attention.
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Background: Neighborhood attention

Neighborhood attention is a general matrix-vector
multiplication (GEMV) problem.

This is because context windows between different
tokens are rarely identical.

GEMVs are usually bound by memory bandwidth,
cannot target Tensor Cores.
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Motivation

NATTEN , neighborhood attention extension, only offers the naive kernels.

1. Naive kernels are not performance-optimized, can’t target Tensor Cores.

2. Fused attention much better than unfused kernels in most cases.
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Attention is back-to-back GEMMs
GEMM: General Matrix-Matrix Multiplication

Consider single-batch single-head self-attention, O = Attention(Q,K,V ), in which three
operands Q,K ∈ Rn×d, and V ∈ Rn×d′ are mapped to output O ∈ Rn×d′ as follows:

1. Attention mode (n): represents sequence,

2. Dimension mode (d and d′): head dimension.
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Neighborhood Attention is a GEMV problem

Neighborhood attention on the other hand is a matrix-vector multiplication problem:
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(

d∑
l=1

QilKkl)Vkj (2)

where ρκ(i) is a set of all attention mode coordinates in [1, n] that are neighbors of i, given
window size κ.

For any given i, j ∈ [1, n], i ̸= j, we can’t assume ρ(i) = ρ(j). Therefore, the two
matrix-matrix multiplications become matrix-vector multiplication problems.
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Neighborhood attention as a GEMM

Neighborhood function (assuming no dilation, and window size κ), ρκ(.), has a special
property:
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In other words, query tokens close to each other overlap greatly in their neighborhoods.

This means we can simply define ρκ(.) as an implicit attention mask fused into the
implementation.

GEMMs on massively parallel hardware like GPUs are computed in tiles. Tiles that only
produce masked attention weights can be skipped entirely, saving compute!

(This is how Mistral’s sliding window attention was implemented [7].)
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But what about 2-D and 3-D?

Neighborhood attention was originally focused on vision and not language, and therefore has
typically focused on 2-D and 3-D spaces.

In 2-D and 3-D spaces, masking based on coordinates is still possible, but the sparse
computation pattern won’t save nearly as much computation without redefining attention for
2-D and 3-D spaces.
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2-D Attention is back-to-back GETTs!
GETT: General Tensor-Tensor Contraction

Consider 2-D self-attention, O = Attention(Q,K,V ), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.
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Consider 2-D self-attention, O = Attention(Q,K,V ), in which three operands
Q,K ∈ Rh×w×d, and V ∈ Rh×w×d′ are mapped to output O ∈ Rh×w×d′ .

All 4 operands are now rank-3 tensors, and their modes are summarized below:

1. Attention mode (h× w): now assumes a 2-D layout,

2. Dimension mode (d and d′): unchanged.

Note: this is unnecessary if you’re only doing bi-directional self-attention. No masking, No
compute to save.
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Neighborhood attention as a GEMM/GETT
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2. Fuse neighborhood attention masking as a scatter/gather operation.
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1. Modify tiling and predication to “convert” GEMM into GETT and maximize sparsity,
software predication is expensive!
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2. Fuse neighborhood attention masking as a scatter/gather operation.
breaks GEMM pipelining in lower precision
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GEMM-based neighborhood attention performance
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Fused neighborhood attention?

Other than being bound by memory bandwidth, all unfused neighborhood attention kernels are
greatly limited by the scatter/gather operation.

However, scatter/gather is not required if we keep attention weights in local memory!
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Fused neighborhood attention
Fused back-to-back GETTs!
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Fused neighborhood attention: op-level performance

NA-1D NA-2D NA-3D

200%

400%

600%

800%

1000%

1200%

1400%

1600%

1800%

Baseline

548 %

1,759 %

193%

958%

1,135 %

Forward pass only (FP16)

Sp
ee
du

p(
%
)

NA-1D NA-2D NA-3D

502 %

844%

92%

385% 447%

Forward pass + backward pass (FP16)

Naive
GEMM NA
Fused NA

Relative performance improvement on Ampere (A100 PCIe).
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Implementation

All of our implementations were done using NVIDIA’s CUTLASS framework (2.X API).

Fused neighborhood attention was based on xFormers’ FMHA kernel, and supports all NVIDIA
architectures since Maxwell and up to and including Ampere.

All of them are already available through NATTEN , just pip install natten or refer to
https://shi-labs.com/natten.
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