Learning Diffusion Priors from Observations by Expectation Maximization

François Rozet, Gérôme Andry, François Lanusse and Gilles Louppe

arXiv:2405.13712
francois-rozet/
diffusion-priors

TL;DR We adapt the expectation-maximization algorithm to train diffusion models from (heavily) incomplete and noisy observations only. Additionally, we propose MMPS, a faster and more accurate posterior sampling scheme for unconditional diffusion models.

Introduction

Many scientific applications are **inverse problems**, where the goal is to recover a latent x given an observation y.

$$y = \text{mask}(x) + \text{noise}$$

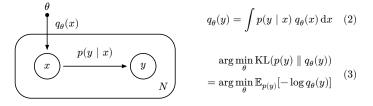
y is not sufficient to recover x unless we have **prior knowledge**

With a prior p(x), the target becomes the posterior distribution $p(x \mid y)$.

Recently, **diffusion models** (DMs) proved to be remarkable priors for posterior inference. But can they be trained from **incomplete and noisy observations** only?

Empirical Bayes (EB)

EB formulates this problem as finding the parameters θ of a prior model $q_{\theta}(x)$ for which the evidence $q_{\theta}(y)$ is closest to the empirical distribution of observations p(y).



Sadly, with a diffusion prior $q_{\theta}(x)$, the density $q_{\theta}(y)$ is not tractable.

Expectation-Maximization (EM) algorithm

For any two sets of parameters θ_a and θ_b ,

$$\log q_{\underline{\theta_a}}(y) - \log q_{\theta_b}(y) \ge \mathbb{E}_{q_{\theta_b}(x \mid y)} \left[\log q_{\underline{\theta_a}}(x, y) - \log q_{\theta_b}(x, y) \right] \tag{4}$$

Therefore, starting from θ_0 , the EM update

$$\theta_{k+1} = \arg\max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x \mid y)} \left[\log q_{\theta}(x, y) - \log q_{\theta_k}(x, y) \right]$$
 (5)

leads to a **sequence of parameters** θ_k for which $\mathbb{E}_{p(y)} \Big[\log q_{\theta_k}(y) \Big]$ is monotonically increasing and converges to a local optimum.

Methods

In the context of EB, $q_{\theta}(x,y) = q_{\theta}(x) \ p(y \mid x)$ and the EM update becomes

$$\theta_{k+1} = \arg\max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x \mid y)} \left[\log q_{\theta}(x) + \underline{\log p(y \mid x)} \right]$$
 (6)

Intuitively, $q_{\theta_{k+1}}(x) \approx \int q_{\theta_k}(x \mid y) \; p(y) \, \mathrm{d}y$ is more consistent with the distribution of observations p(y) than $q_{\theta_k}(x)$.

As long as we can

- (i) generate samples from the posterior $q_{\theta_k}(x \mid y)$ and
- (ii) train the prior $q_{\theta_{k+1}}(x)$ to fit these samples,

we can train any model $q_{\theta}(x)$ from observations, including DMs!

Moment Matching Posterior Sampling (MMPS)

To generate from p(x), DMs approximate the score $\nabla_{\!x_t} \log p(x_t)$ of a series of increasingly noisy distributions $p(x_t) = \int \mathcal{N}(x_t \mid x, \Sigma_t) \; p(x) \, \mathrm{d}x$. To sample from the posterior $p(x \mid y)$, we need to approximate

For a linear Gaussian observation process $p(y \mid x) = \mathcal{N}\big(y \mid Ax, \Sigma_y\big)$, the approximation $p(x \mid x_t) \approx \mathcal{N}(x \mid \mathbb{E}[x \mid x_t], \mathbb{V}[x \mid x_t])$ leads to

$$\begin{split} \nabla_{\!x_t} \log p(y \mid x_t) &\approx \nabla_{\!x_t} \log \mathcal{N} \big(y \mid A \mathbb{E}[x \mid x_t], \Sigma_y + A \mathbb{V}[x \mid x_t] A^\top \big) \\ &\approx \nabla_{\!x_t} \mathbb{E}[x \mid x_t]^\top A^\top \! \underbrace{ \big(\Sigma_y + A \mathbb{V}[x \mid x_t] A^\top \big)^{-1} \big(y - A \mathbb{E}[x \mid x_t] \big)}_{\text{symmetric positive definite linear system}} \end{split} \tag{8}$$

 $\mathbb{E}[x\mid x_t]$ and $\mathbb{V}[x\mid x_t]$ are linked to the score via Tweedie's formulae

$$\begin{split} \mathbb{E}[x \mid x_t] &= x_t + \Sigma_t \nabla_{x_t} \log p(x_t) \\ \mathbb{V}[x \mid x_t] &= \Sigma_t + \Sigma_t \nabla_{x_t}^2 \log p(x_t) \Sigma_t = \Sigma_t \nabla_{x_t}^\top \mathbb{E}[x \mid x_t] \end{split} \tag{9}$$

Instead of computing an expensive matrix inverse, we can solve the linear system in Eq. (8) with the **conjugate gradient** method.

Results

Figure 1. Samples from the posterior $q_{\theta_k}(x \mid y)$ along the EM iterations for the corrupted (75%) CIFAR-10 experiment. Samples become gradually more detailed and less noisy with iterations.

Daras (2023)	Corruption	FID↓	IS ↑		Corruption	FID↓	IS ↑
	0.20	11.70	7.97	IZ	0.25	5.88	8.83
	0.40	18.85	7.45	nO	0.50	6.76	8.75
	0.60	28.88	6.88		0.75	13.18	8.14

Table 1. Evaluation of final priors trained on corrupted CIFAR-10.

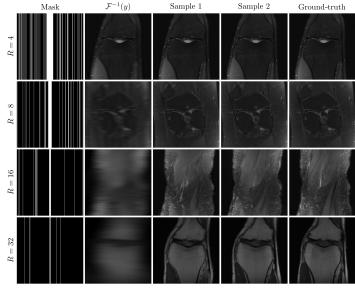


Figure 2. Accelerated MRI posterior samples using a diffusion prior trained from incomplete (R=8) spectral observations only. Samples are detailed and varied, while remaining consistent with the observation.