Learning Diffusion Priors from Observations by Expectation Maximization

François Rozet, Gérôme Andry, François Lanusse and Gilles Louppe

TL;DR We adapt the expectation-maximization algorithm to train diffusion models from (heavily) incomplete and noisy observations only. Additionally, we propose MMPS, a faster and more accurate posterior sampling scheme for unconditional diffusion models.

Introduction

Many scientific applications are **inverse problems**, where the goal is to recover a latent x given an observation y .

 $y = \text{mask}(x) + \text{noise}$

 y is not sufficient to recover x unless we have prior knowledge

With a prior $p(x)$, the target becomes the posterior distribution $p(x | y)$.

$$
\bigcirc x \longmapsto \xrightarrow{p(y \mid x)} \bigcirc y \longmapsto \bigcirc y \longmapsto \bigcirc \xrightarrow[p(x \mid y)] \infty
$$

 $p(x)$ $\overrightarrow{p(y|x)}$ (1)

prior

likelihood

Recently, **diffusion models** (DMs) proved to be remarkable priors for posterior inference. But can they be trained from *incomplete and noisy* observations only?

Empirical Bayes (EB)

EB formulates this problem as finding the parameters θ of a prior model $q_{\theta}(x)$ for which the evidence $q_{\theta}(y)$ is closest to the empirical distribution of observations $p(y)$.

$$
q_{\theta}(y) = \int p(y \mid x) q_{\theta}(x) dx
$$
 (2)
\n
$$
\begin{pmatrix}\np(y \mid x) \\
\hline\n\end{pmatrix}
$$
\n
$$
\text{arg min}_{\theta} \text{KL}(p(y) \parallel q_{\theta}(y))
$$
\n
$$
= \text{arg min}_{\theta} \mathbb{E}_{p(y)}[-\log q_{\theta}(y)]
$$
 (3)

Sadly, with a diffusion prior $q_{\theta}(x)$, the density $q_{\theta}(y)$ is not tractable.

Expectation-Maximization (EM) algorithm

For any two sets of parameters θ_a and θ_b ,

$$
\log q_{\theta_a}(y) - \log q_{\theta_b}(y) \geq \mathbb{E}_{q_{\theta_b}(x+y)} \left[\log q_{\theta_a}(x,y) - \log q_{\theta_b}(x,y) \right] \tag{4}
$$

Therefore, starting from θ_0 , the EM update

$$
\theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x \mid y)} \left[\log q_{\theta}(x, y) - \underline{\log q_{\theta_k}(x, y)} \right] \tag{5}
$$

leads to a **sequence of parameters** θ_k for which $\mathbb{E}_{p(y)}\big[\log q_{\theta_k}(y)\big]$ is monotonically increasing and converges to a local optimum.

Methods

In the context of EB, $q_{\theta}(x, y) = q_{\theta}(x) p(y | x)$ and the EM update becomes

$$
\theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{p(y)} \mathbb{E}_{q_{\theta_k}(x+y)} \left[\log q_{\theta}(x) + \underline{\log p(y+x)} \right] \tag{6}
$$

Intuitively, $q_{\theta_{k+1}}(x) \approx \int q_{\theta_k}(x \mid y) \, p(y) \, \mathrm{d}y$ is more consistent with the distribution of observations $p(y)$ than $q_{\theta_k}(x)$.

As long as we can

(i) generate samples from the posterior $q_{\theta_k}(x \mid y)$ and

(ii) train the prior $q_{\theta_{k+1}}(x)$ to fit these samples,

we can train any model $q_{\theta}(x)$ from observations, including DMs!

Moment Matching Posterior Sampling (MMPS)

To generate from $p(x)$, DMs approximate the score $\nabla_{\!x_t}\log p(x_t)$ of a series of increasingly noisy distributions $p(x_t) = \int \mathcal{N}(x_t \mid x, \Sigma_t) \ p(x) \, \mathrm{d}x$. To sample from the posterior $p(x | y)$, we need to approximate

$$
\overbrace{\nabla_{\!x_t}\log p(x_t\mid y)}^{\text{posterior score}} = \overbrace{\nabla_{\!x_t}\log p(x_t)}^{\text{prior score}} + \overbrace{\nabla_{\!x_t}\log p(y\mid x_t)}^{\text{likelihood score}} \tag{7}
$$

For a linear Gaussian observation process $p(y \mid x) = \mathcal{N}(y \mid Ax, \Sigma_y)$, the approximation $p(x \mid x_t) \approx \mathcal{N}(x \mid \mathbb{E}[x \mid x_t], \mathbb{V}[x \mid x_t])$ leads to

$$
\begin{aligned} \nabla_{\!x_t} \log p(y \mid x_t) &\approx \nabla_{\!x_t} \log \mathcal{N}\big(y \mid A \mathbb{E}[x \mid x_t], \Sigma_y + A \mathbb{V}[x \mid x_t] A^\top\big) \\ &\approx \nabla_{\!x_t} \mathbb{E}[x \mid x_t]^{\top} A^\top \underbrace{\big(\Sigma_y + A \mathbb{V}[x \mid x_t] A^\top\big)^{-1} (y - A \mathbb{E}[x \mid x_t])}_{\text{symmetric positive definite linear system}} \end{aligned} \label{eq:Vx_t}
$$
(8)

 $\mathbb{E}[x\mid x_t]$ and $\mathbb{V}[x\mid x_t]$ are linked to the score via Tweedie's formulae

$$
\begin{aligned} &\mathbb{E}[x\mid x_t]=x_t+\Sigma_t\nabla_{\!x_t}\log p(x_t)\\ &\mathbb{V}[x\mid x_t]=\Sigma_t+\Sigma_t\nabla_{\!x_t}^2\log p(x_t)\Sigma_t=\Sigma_t\nabla_{\!x_t}^\top \mathbb{E}[x\mid x_t] \end{aligned}
$$

Instead of computing an expensive matrix inverse, we can solve the linear system in Eq. (8) with the **conjugate gradient** method.

(9)

[arXiv:2405.13712](https://arxiv.org/abs/2405.13712) [francois-rozet/](https://github.com/francois-rozet/diffusion-priors) [diffusion-priors](https://github.com/francois-rozet/diffusion-priors)

Results

tnk

Figure 1. Samples from the posterior $q_{\theta_k}(x \mid y)$ along the EM iterations for the corrupted (75%) CIFAR-10 experiment. Samples become gradually more detailed and less noisy with iterations.

Table 1. Evaluation of final priors trained on corrupted CIFAR-10.

Figure 2. Accelerated MRI posterior samples using a diffusion prior trained from incomplete $(R = 8)$ spectral observations only. Samples are detailed and varied, while remaining consistent with the observation.