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Main question

Distance-generating functions provide generalized notions of distances

Constrained optimization require a DGF to move appropriately in the feasible set

What is the optimal DGF for extensive-form games?

Key results

Developed a new analysis for OMD based on the diameter/convexity ratio results of the DilEnt DGF.

Established a matching regret lower bound, confirming the implied optimality of DilEnt.

Achieved a new state-of-the-art convergence rate for Clairvoyant OMD to CCE.

Regularizer Norm pair |D|/µ ratio Max gradient norm

Dilated Entropy [Kroer et al., 2020] `1 and `∞ norms O(2D‖Q‖2
1 log |A|) ≤ 1

Dilated Gl. Entropy [Farina et al., 2021] `1 and `∞ norms O(‖Q‖2
1 log |A|) ≤ 1

DilEnt (this paper) treeplex norms ln |V| ≤ 1

Table 1. Comparison of diameter/convexity (|D|/µ) ratio with prior results. It holds that ln |V| ≤ O(‖Q‖1 log |A|)

Tree-Form Sequential Decision Problem (TFSDP)

TFSDP models the decision-making process of players in extensive-form games.

A decision point j ∈ J corresponds to an information set for the player.

An observation point ja ∈ Σ represents the state that follows an action.

Figure 1. An example of an EFG and its corresponding TFSDP. Notably, pB = A1.

Sequence-form strategy space Q ⊆ RΣ structures strategies with linearity. Each entry x[ja] represents the
probability of “reaching” the intermediate state ja, satisfying

x[∅] = 1,
∑
a∈Aj

x[ja] = x[pj] ∀j ∈ J .

Here, pj denote the preceding observation point of decision point j.

Problem Setting

Online learning on sequence-form strategy space Qwith full-information feedback:

In each round, the agent picks xt ∈ Q.
They observe the adversarial reward vector wt and the reward 〈xt, wt〉 ∈ [−1, 1].

Goal: Minimize the cumulative regret:

Regret(T ) := max
x∗∈Q

T∑
t=1
〈x∗ − xt, wt〉.

Proximal Method

Proximal step generalizes the notion of gradient ascent to restricted space Q:

xt+1← Πϕ(ηg, xt) := argmax
x̂∈Q

{〈ηg, x̂〉 − Dϕ(x̂‖xt)}.

Here, ϕ is a distance-generating function (DGF) and Dϕ is the Bregman divergence.

Given the primal-dual norms ‖ · ‖ and ‖ · ‖∗ with ‖w‖∗ ≤ 1, the performance of OMD is determined by:

The strong convexity µ of DGF over the primal norm ‖ · ‖
. A larger convexity⇒ enables a larger step size⇒ easier to learn

The diameter |D| of the strategy space measured by DGF

. A smaller diameter⇒ a smaller search space⇒ easier to learn

⇒ The diameter/convexity ratio |D|/µ is the key factor in the performance of mirror descent.

We inspect theweight-one dilated entropy (DilEnt) in TFSDP:

ϕ1 : Q 3 x 7→
∑
j∈J

∑
a∈A

x[ja] ln
(x[ja]

x[pj]

)
. When TFSDP only has one decision point, ϕ1 reduces to entropy.

Primal-Dual Treeplex Norms

We introduce a pair of primal-dual norms: the treeplex `1-norm ‖ · ‖H,1 and the treeplex `∞-norm ‖ · ‖H,∞:

‖u‖H,1 := sup
y∈Q∗
〈|u|, y〉, ‖u‖H,∞ := sup

x∈Q
〈|u|, x〉.

Here, Q∗ is the dual polytope ofQ. Both treeplex norms can be computed via recursion:

‖u‖Hp,1 := max
j:pj=p

∑
a∈Aj

‖u‖Hja,1, ‖u‖Hp,∞ :=
∑

j:pj=p

max
a∈Aj

‖u‖Hja,∞.

Key Structural Results

[Lemma 4.4] The dual norm of any feasible reward vector w satisfies ‖w‖H,∞ ≤ 1.

[Lemma 5.1] DilEnt is 1-strongly convexwith respect to the treeplex `1-norm: ‖ · ‖2
∇2ϕ1(x) ≥ ‖ · ‖

2
H,1.

[Lemma 5.2] The diameter of the strategy space is upper bounded as maxx∗Dϕ1
(x∗, x1) ≤ ln |V|.

Main Results on Regret Upper Bounds

[Theorem 5.4] Running OMD with DilEnt during the proximal steps achieves a regret bound of

Regret(T ) ≤
√

2 ln |V|
√

T ,

where |V| := Q∩ {0, 1}Σ is the number of pure strategies.

[Theorem 5.6] If every player runs Clairvoyant OMD with DilEnt in an n-player game, the average joint

policy converges to a Coarse Correlated Equilibrium at the rate

ε ≤ O(n log |V| log T/T ).

Lower Bound Implies Optimality of DilEnt

[Theorem 6.1 + Theorem 6.2] Any algorithm incurs an expected regret of at least

Regret(T ) ≥ Ω̃(
√

ln |V|
√

T )

Under certain structural assumptions, the bound is free from hidden logarithmic factors.

DilEnt achieves an nearly-optimal diameter/convexity ratio:

Better DGF⇒ better regret upper bound in Theorem 5.4

A contradiction arises since superior regret upper bounds violate the lower bound above.
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