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Introduction: Agnostic learning of a concept class F
Given: samples (xi , yi ) ∈ Rn × {±1}.

Goal: Find a classifier f̂ such that

P[f̂ (x) ̸= y ] ≤ opt+ ε,

where opt = minf ∈F P[f (x) ̸= y ], using as
few samples and time as possible.

Issue: Generally computationally hard
→ Add distributional assumption that
xi ∼ D for some (known) D.

For this work: Assume samples come from
the standard Gaussian.

fopt = argmin
f∈F

P[f(x) �= y]
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Testable learning — Definition

Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or
impossible.

Recently introduced model of testable learning [RV23]:

1 (Tester) Check computationally tractable relaxation of distributional
assumption. Accept or reject the samples.

2 (Learner) If we accept the sample, run learning algorithm.

Conditions:

(Completeness) Samples from the target distribution are accepted.

(Soundness) Whenever tester accepts, learner needs to output a good
hypothesis.
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Testable learning — Results

Concept class Agnostic learning Testable learning
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[Kan11b]
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?

Convex sets

[KKMS08]: Kalai, Klivans, Mansour, and Servedio.“Agnostically learning halfspaces” (2008)
[DKN10]: Diakonikolas, Kane, and Nelson.“Bounded independence fools degree-2 threshold functions” (2010)
[RV23]: Rubinfeld and Vasilyan.“Testing distributional assumptions of learning algorithms” (2023)
[GKK23]: Gollakota, Klivans, and Kothari.“A moment-matching approach to testable learning and a new characterization of
Rademacher complexity” (2023)

[KOS08]: Klivans, O’Donnell, and Servedio.“Learning Geometric Concepts via Gaussian Surface Area” (2008)
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2Õ(
√
n/ε4) 2Ω(n)

[KOS08] [RV23]

Halfspaces

Degree-d PTFs ?

Convex sets

[KKMS08]: Kalai, Klivans, Mansour, and Servedio.“Agnostically learning halfspaces” (2008)
[DKN10]: Diakonikolas, Kane, and Nelson.“Bounded independence fools degree-2 threshold functions” (2010)
[RV23]: Rubinfeld and Vasilyan.“Testing distributional assumptions of learning algorithms” (2023)
[GKK23]: Gollakota, Klivans, and Kothari.“A moment-matching approach to testable learning and a new characterization of
Rademacher complexity” (2023)
[KOS08]: Klivans, O’Donnell, and Servedio.“Learning Geometric Concepts via Gaussian Surface Area” (2008)

Slot, Tiegel, Wiedmer (ETH Zurich) Testably learning PTFs 4 / 5



Testable learning — Results

Concept class Agnostic learning Testable learning
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Testable learning — Our result

Theorem (Main result)

Degree-d PTFs can be testably learned with respect to the standard

Gaussian in time and sample complexity n
Õd

(
ε−4d·7d

)
.

Technique: Use “fooling” technique from [GKK23]; proof of this condition
is based on [Kan11a].

Open question: Can the dependence on d in the above result be improved
or can lower bounds be shown?

[GKK23]: Gollakota, Klivans, and Kothari.“A moment-matching approach to testable learning and a new characterization of
Rademacher complexity” (2023)
[Kan11a]: Kane.“k-independent Gaussians fool polynomial threshold functions” (2011)
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