Testably learning polynomial threshold functions Thirty-Eighth Annual Conference on Neural Information Processing Systems

Lucas Slot ETH Zurich

Stefan Tiegel ETH Zurich

Manuel Wiedmer ETH Zurich

< □ > < @ > < 注 > < 注 > ... 注

Introduction: Agnostic learning of a concept class \mathcal{F}

- Given: samples $(x_i, y_i) \in \mathbb{R}^n \times \{\pm 1\}$.
- Goal: Find a classifier \hat{f} such that

$$\mathbb{P}[\hat{f}(x) \neq y] \leq \text{opt} + \varepsilon,$$

where $opt = \min_{f \in \mathcal{F}} \mathbb{P}[f(x) \neq y]$, using as few samples and time as possible.

Introduction: Agnostic learning of a concept class \mathcal{F}

- Given: samples $(x_i, y_i) \in \mathbb{R}^n \times \{\pm 1\}$.
- Goal: Find a classifier \hat{f} such that

 $\mathbb{P}[\hat{f}(x) \neq y] \leq \text{opt} + \varepsilon,$

where $opt = \min_{f \in \mathcal{F}} \mathbb{P}[f(x) \neq y]$, using as few samples and time as possible.

Issue: Generally computationally hard \rightarrow Add distributional assumption that $x_i \sim \mathcal{D}$ for some (known) \mathcal{D} .

For this work: Assume samples come from the standard Gaussian.

Testable learning — Definition

Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or impossible.

Testable learning — Definition

Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or impossible.

Recently introduced model of testable learning [RV23]:

- (Tester) Check computationally tractable relaxation of distributional assumption. Accept or reject the samples.
- (Learner) If we accept the sample, run learning algorithm.

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

Testable learning — Definition

Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or impossible.

Recently introduced model of testable learning [RV23]:

- (Tester) Check computationally tractable relaxation of distributional assumption. Accept or reject the samples.
- (Learner) If we accept the sample, run learning algorithm.

Conditions:

- (Completeness) Samples from the target distribution are accepted.
- (Soundness) Whenever tester accepts, learner needs to output a good hypothesis.

< □ > < □ > < □ > □ =

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

Concept class	Agnostic learning	Testable learning
Halfspaces	$n^{ ilde{O}(1/arepsilon^2)}$	$n^{ ilde{O}(1/arepsilon^2)}$
	[KKMS08; DKN10]	[RV23; GKK23]
Degree- <i>d</i> PTFs		
Convex sets		

(日)

[[]KKMS08]: Kalai, Klivans, Mansour, and Servedio. "Agnostically learning halfspaces" (2008)

[[]DKN10]: Diakonikolas, Kane, and Nelson. "Bounded independence fools degree-2 threshold functions" (2010)

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

[[]GKK23]: Gollakota, Klivans, and Kothari. "A moment-matching approach to testable learning and a new characterization of Rademacher complexity" (2023)

Concept class	Agnostic learning	Testable learning
Halfspaces	$n^{ ilde{O}(1/arepsilon^2)}$	$n^{ ilde{O}(1/arepsilon^2)}$
	[KKMS08; DKN10]	[RV23; GKK23]
Degree- <i>d</i> PTFs		
Convex sets	$2^{\tilde{O}(\sqrt{n}/\varepsilon^4)}$	$2^{\Omega(n)}$
	[KOS08]	[RV23]

イロト イボト イヨト イヨト

[[]KKMS08]: Kalai, Klivans, Mansour, and Servedio. "Agnostically learning halfspaces" (2008)

[[]DKN10]: Diakonikolas, Kane, and Nelson. "Bounded independence fools degree-2 threshold functions" (2010)

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

[[]GKK23]: Gollakota, Klivans, and Kothari. "A moment-matching approach to testable learning and a new characterization of Rademacher complexity" (2023)

[[]KOS08]: Klivans, O'Donnell, and Servedio. "Learning Geometric Concepts via Gaussian Surface Area" (2008)

Concept class	Agnostic learning	Testable learning
Halfspaces	$n^{ ilde{O}(1/arepsilon^2)}$	$n^{ ilde{O}(1/arepsilon^2)}$
	[KKMS08; DKN10]	[RV23; GKK23]
Degree- <i>d</i> PTFs	$n^{O(d^2/arepsilon^4)}$	7
	[Kan11b]	•
Convex sets	$2^{ ilde{O}(\sqrt{n}/arepsilon^4)}$	$2^{\Omega(n)}$
	[KOS08]	[RV23]

イロト イボト イヨト イヨト

[[]KKMS08]: Kalai, Klivans, Mansour, and Servedio. "Agnostically learning halfspaces" (2008)

[[]DKN10]: Diakonikolas, Kane, and Nelson. "Bounded independence fools degree-2 threshold functions" (2010)

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

[[]GKK23]: Gollakota, Klivans, and Kothari. "A moment-matching approach to testable learning and a new characterization of Rademacher complexity" (2023)

[[]KOS08]: Klivans, O'Donnell, and Servedio. "Learning Geometric Concepts via Gaussian Surface Area" (2008)

Concept class	Agnostic learning	Testable learning
Halfspaces	$n^{ ilde{O}(1/arepsilon^2)}$	$n^{ ilde{O}(1/arepsilon^2)}$
	[KKMS08; DKN10]	[RV23; GKK23]
Degree- <i>d</i> PTFs	$n^{O(d^2/arepsilon^4)}$	$n^{\mathrm{poly}(1/arepsilon)}$ for constant d
	[Kan11b]	Our result
Convex sets	$2^{ ilde{O}(\sqrt{n}/arepsilon^4)}$	$2^{\Omega(n)}$
	[KOS08]	[RV23]

イロト イポト イヨト イヨト

[[]KKMS08]: Kalai, Klivans, Mansour, and Servedio. "Agnostically learning halfspaces" (2008)

[[]DKN10]: Diakonikolas, Kane, and Nelson. "Bounded independence fools degree-2 threshold functions" (2010)

[[]RV23]: Rubinfeld and Vasilyan. "Testing distributional assumptions of learning algorithms" (2023)

[[]GKK23]: Gollakota, Klivans, and Kothari. "A moment-matching approach to testable learning and a new characterization of Rademacher complexity" (2023)

[[]KOS08]: Klivans, O'Donnell, and Servedio. "Learning Geometric Concepts via Gaussian Surface Area" (2008)

Testable learning — Our result

Theorem (Main result)

Degree-d PTFs can be testably learned with respect to the standard Gaussian in time and sample complexity $n^{\tilde{O}_d(\varepsilon^{-4d\cdot7^d})}$.

Technique: Use "fooling" technique from [GKK23]; proof of this condition is based on [Kan11a].

Open question: Can the dependence on d in the above result be improved or can lower bounds be shown?

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

[[]GKK23]: Gollakota, Klivans, and Kothari. "A moment-matching approach to testable learning and a new characterization of Rademacher complexity" (2023)

[[]Kan11a]: Kane. "k-independent Gaussians fool polynomial threshold functions" (2011)