

Geometric-Averaged Preference Optimization

for Soft Preference Labels

Hiroki Furuta¹², Kuang-Huei Lee¹, Shixiang Shane Gu¹, Yutaka Matsuo², Aleksandra Faust¹, Heiga Zen¹, Izzeddin Gur¹

¹Google DeepMind, ²The University of Tokyo

RLHF & DPO only consider binary preference labels

- Most prior works to align LLMs (RLHF & DPO) only assume binary preference labels.
 - y_1 is better than y_2 (with probability/confidence 1)
 - E.g. reward modeling objective only considers the positive term of binary cross entropy:

$$\min_{\psi} -\mathbb{E}\left[\log \sigma(r_{\psi}(x, y_1) - r_{\psi}(x, y_2))\right]$$

 However, human preference can vary across individuals, and should be represented distributionally → proportional soft preference labels

Soft Preference Labels

- Soft preference labels are proportional
 - E.g. y_1 is better than y_2 in 70% (y_2 is better than y_1 in 30%)
- We define soft labels as an approximation of true preference probability p*, and estimate it with an average of sampled binary preference labels $l_i \in \{0, 1\}$
 - Monte-Carlo sampling, Majority Voting, etc

$$\hat{p}_{x,y_1,y_2} := \hat{p}(y_1 \succ y_2 | x) \approx p^*(y_1 \succ y_2 | x) \qquad \hat{p} = \frac{1}{M} \sum_{i=1}^M l_i$$

• (to estimate soft preference labels, we may leverage AI feedback with token logits and Bradley-Terry models)

Proposal: Weighted Geometric-Averaging of Output Likelihoods

$$y_w \sim \bar{\pi}(y_w \mid x) := \frac{1}{Z_{\pi,w}(x)} \pi(y_1 \mid x)^{\hat{p}} \pi(y_2 \mid x)^{1-\hat{p}}$$
$$y_l \sim \bar{\pi}(y_l \mid x) := \frac{1}{Z_{\pi,l}(x)} \pi(y_1 \mid x)^{1-\hat{p}} \pi(y_2 \mid x)^{\hat{p}},$$

• Replace the original likelihoods in DPO objective with their weighted geometric average (while ignoring normalization term)

$$\begin{split} \mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{\text{ref}}) &= -\mathbb{E}_{(x,y_{1},y_{2})\sim\mathcal{D}}\left[\log\sigma\left(h_{\theta}(x,y_{1},y_{2})\right)\right] \\ &= -\mathbb{E}_{(x,y_{1},y_{2})\sim\mathcal{D}}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(y_{1}\mid x)\pi_{\text{ref}}(y_{2}\mid x)}{\pi_{\text{ref}}(y_{1}\mid x)\pi_{\theta}(y_{2}\mid x)}\right)\right] \\ \pi(y_{1}\mid x) \to \pi(y_{1}\mid x)^{\hat{p}}\pi(y_{2}\mid x)^{1-\hat{p}} \left[\pi(y_{2}\mid x) \to \pi(y_{1}\mid x)^{1-\hat{p}}\pi(y_{2}\mid x)^{\hat{p}}\right] \\ \hline \mathcal{G}_{\text{Gometric Direct Preference Optimization (GDPO)} \\ \mathcal{L}_{\text{GDPO}}(\pi_{\theta}, \pi_{\text{ref}}) &= -\mathbb{E}_{\mathcal{D}}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(y_{1}\mid x)^{\hat{p}}\pi_{\theta}(y_{2}\mid x)^{1-\hat{p}}\pi_{\text{ref}}(y_{1}\mid x)^{1-\hat{p}}\pi_{\theta}(y_{1}\mid x)^{1-\hat{p}}\pi_{\theta}(y_{2}\mid x)^{\hat{p}}}{\pi_{\text{ref}}(y_{1}\mid x)^{\hat{p}}\pi_{\text{ref}}(y_{2}\mid x)^{1-\hat{p}}\pi_{\theta}(y_{1}\mid x)^{1-\hat{p}}\pi_{\theta}(y_{2}\mid x)^{\hat{p}}}\right)\right] \\ &= -\mathbb{E}_{(x,y_{1},y_{2},\hat{p})\sim\mathcal{D}}\left[\log\sigma\left(\beta(2\hat{p}-1)\log\frac{\pi_{\theta}(y_{1}\mid x)\pi_{\text{ref}}(y_{2}\mid x)}{\pi_{\text{ref}}(y_{1}\mid x)\pi_{\theta}(y_{2}\mid x)}\right)\right], \end{split}$$

Google DeepMind

Proposal: Geometric-DPO and its variant (GIPO)

• Such an geometric-averaging can be applicable to any method based on DPO

$$\mathcal{L}_{\text{IPO}}(\pi_{\theta}, \pi_{\text{ref}}) = \mathbb{E}_{(x, y_1, y_2) \sim \mathcal{D}} \left[\left(h_{\theta}(x, y_1, y_2) - \frac{1}{2\beta} \right)^2 \right]$$

$$\mathcal{L}_{cIPO}(\pi_{\theta}, \pi_{ref}) = \mathbb{E}_{(x, y_1, y_2, \hat{p}) \sim \mathcal{D}} \left[\left(h_{\theta}(x, y_1, y_2) - \frac{2\hat{p} - 1}{2\beta} \right)^2 \right]$$

Geometric Identity Preference Optimization (GIPO)

$$\mathcal{L}_{\text{GIPO}}(\pi_{\theta}, \pi_{\text{ref}}) = \mathbb{E}_{(x, y_1, y_2, \hat{p}) \sim \mathcal{D}} \left[(2\hat{p} - 1)^2 \left(h_{\theta}(x, y_1, y_2) - \frac{1}{2\beta} \right)^2 \right]$$

Proposal: Geometric-DPO and its variant (GROPO)

• Such an geometric-averaging can be applicable to any method based on DPO

$$\begin{aligned} \mathcal{L}_{\text{ROPO}}(\pi_{\theta}, \pi_{\text{ref}}) &= \alpha \mathbb{E}_{(x, y_1, y_2, \hat{p}) \sim \mathcal{D}} \left[\sigma \left(h_{\theta}(x, y_2, y_1) \right) \right] - \gamma \mathbb{E}_{(x, y_2, y_1) \sim \mathcal{D}} \left[\log \sigma \left(h_{\theta}(x, y_1, y_2) \right) \right] \\ &= \alpha \left(1 - \mathbb{E}_{(x, y_1, y_2, \hat{p}) \sim \mathcal{D}} \left[\sigma \left(h_{\theta}(x, y_1, y_2) \right] \right) \right) + \gamma \mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{\text{ref}}), \end{aligned}$$

Geometric Robust Preference Optimization (GROPO)

$$\mathcal{L}_{\text{GROPO}}(\pi_{\theta}, \pi_{\text{ref}}) = \alpha \left(1 - \mathbb{E}_{\mathcal{D}} \left[\sigma \left(\beta(2\hat{p} - 1) \log \frac{\pi_{\theta}(y_1 \mid x) \pi_{\text{ref}}(y_2 \mid x)}{\pi_{\text{ref}}(y_1 \mid x) \pi_{\theta}(y_2 \mid x)} \right) \right] \right) + \gamma \mathcal{L}_{\text{GDPO}}(\pi_{\theta}, \pi_{\text{ref}})$$

Adjust the Scale of Gradients

- Geometric-Averaging can adjust the norm of gradient based on soft preference
 - Make the scale of gradients from the equally-good samples close to zero (i.e. ignoring gradients around p=0.5)

Soft Preference Labels from AI Feedback

• Ask LLM which output (1) or (2) is preferable, compute the logit of (1) and (2) tokens, and then transform them into AI preference probability through Bradley-Terry model

$$\hat{p}_{\mathrm{AI}}(y_1 \succ y_2 \mid x) = \frac{\exp(\mathtt{score}((1)))}{\exp(\mathtt{score}((1))) + \exp(\mathtt{score}((2)))}$$

Prompt for AI Feedback (Train/Eval) on Plasma Plan

Task: Judge the quality of two plans, choose the option among (1) or (2). A good plan should be well-ordered, complete, informative and contains no repetitive steps.

Goal: {goal} Plan (1): {plan_1} Plan (2): {plan_2} Choose among (1) or (2):

Results with Common RLHF benchmarks

• In standard RLHF benchmarks (Reddit TL;DR, Helpfulness & Harmlessness),

Geometric-Averaging consistently outperforms original methods

	Reddit TL;DR				Anthropic Helpful				Anthropic Harmless			
	v.s. PaLM 2-L		v.s. GPT-4		v.s. PaLM 2-L		v.s. GPT-4		v.s. PaLM 2-L		v.s. GPT-4	
Methods	Binary	%	Binary	%	Binary	%	Binary	%	Binary	%	Binary	%
SFT	16.20%	41.08%	3.80%	33.38%	62.60%	56.69%	5.74%	20.67%	62.76%	57.83%	31.54%	36.42%
DPO [41]	16.90%	40.91%	4.00%	33.51%	86.21%	75.40%	16.23%	33.98%	75.40%	65.95%	41.02%	42.79%
cDPO [30]	17.20%	41.61%	3.80%	33.38%	83.28%	74.04%	16.11%	33.28%	74.97%	65.91%	39.53%	40.52%
GDPO (ours)	19.30%	41.69%	4.70%	33.56%	88.90%	76.59%	19.83%	36.07%	77.70%	67.43%	43.31%	44.33%
IPO [2]	20.40%	42.79%	5.00%	34.22%	91.09%	78.91%	21.66%	38.84%	80.36%	68.85%	43.37%	44.72%
cIPO [27]	19.70%	42.04%	4.40%	33.52%	90.24%	77.84%	18.18%	36.88%	81.85%	69.92%	44.80%	45.03%
GIPO (ours)	21.90%	43.03%	5.30%	34.84%	92.56%	79.48 %	21.90%	39.04%	87.24 %	71.75%	51.92%	47.86 %
ROPO [27]	16.20%	40.20%	4.20%	33.40%	86.33%	74.96%	17.45%	34.83%	74.10%	65.74%	43.37%	44.72%
GROPO (ours)	18.50%	41.56%	5.30%	34.84%	88.71 %	77.10%	20.13%	36.42%	77.26%	67.38 %	44.80%	45.03%
Ave. Δ (+Geom.)	+2.10%	+0.69%	+0.78%	+0.72%	+2.90%	+1.62%	+2.79%	+1.77%	+4.09%	+1.87%	+4.63%	+2.33%

Results with Online Feedback

- By preparing extra reward models, or calculating the reward with the likelihood of LLM itself (self-preference), we can extend offline DPO into online settings
- With self-preference (inaccurate in many cases), GDPO significantly outperforms

others.

Google DeepMind

Issue 1: Over-Optimization (in DPO)

- It is pointed out that DPO objective forces reward gap increase to infinity
- This causes unnecessary update of positive/negative likelihoods (i.e. over-optimization) $r_{\theta}(x, y_w) r_{\theta}(x, y_l) \to \infty$

Issue 2: Objective Mismatch (in cDPO)

• Conservative DPO (cDPO) have binary-cross entropy objective by leveraging soft preference labels, which is good at preference modeling, but not always lead to better greedy decoding for text generation (objective mismatch)

Conclusion

- Introduce soft preference labels, in contrast to binary labels
 - Majority Voting, Al feedback, etc
- Propose weighted geometric averaging of output likelihood
 - Applicable to any method based on DPO
 - Make the scale of gradients from the equally-good samples close to zero
- Geometric-DPO/IPO/ROPO consistently outperforms original methods
- GDPO can mitigate over-optimization and objective mismatch issues